GEOTECHNICAL DATA REPORT TAYLOR CREEK RESTORATION PROJECT DEAD HORSE CANYON SEATTLE, WASHINGTON

Work Authorization No.: Project C399315 October 2022

707 South Plummer Street Seattle, Washington 98134

TABLE OF CONTENTS

		Page
1.0 INTROD	UCTION	1
2.0 PURPOSE	AND SCOPE	OF WORK1
3.0 SITE AND	PROJECT UN	NDERSTANDING1
3.1 Sui	RFACE CONDITI	ONS1
3.2 PR	DJECT UNDERST	randing2
3.3 His	TORICAL LAND	OSLIDES3
4.0 SUBSURF	ACE CONDIT	TIONS4
4.1 GE	NERAL GEOLOG	GY4
4.2 Soi	L CONDITIONS.	5
	4.2.1 Soil Uni	t 15
	4.2.2 Soil Uni	t 25
		t 35
	4.2.4 Soil Uni	t 45
	4.2.5 Soil Uni	t 55
	4.2.6 Soil Uni	t 66
4.3 GR	OUNDWATER C	ONDITIONS6
5.0 LIMITATI	ONS AND AD	DDITIONAL SERVICES6
6.0 REFEREN	CES	7
List of Figure	s (following te	ext)
Figure 1	Site and ECA	Map
Figure 2	Site and Land	<u> </u>
Figure 3		and Exploration Map
Figure 4	Generalized S	ubsurface Profile Along Access Road Alignment (5 sheets)
Appendix A:	Field Explora	tion Program
Figure A-1		Key to Symbols and Terms Used on Boring Logs (2 sheets)
Figures A-2 th	rough A-17	Summary Boring Logs B-301 through B-315

Appendix B: Geotechnical Laboratory Testing Program

Appendix C: Historical Explorations

GEOTECHNICAL DATA REPORT TAYLOR CREEK RESTORATION PROJECT DEAD HORSE CANYON SEATTLE, WASHINGTON

1.0 INTRODUCTION

This geotechnical data report (GDR) presents the results of our geotechnical investigation for a temporary access road that Seattle Public Utilities (SPU) is considering constructing in Dead Horse Canyon as part of the Taylor Creek Restoration Project. We will provide geotechnical engineering recommendations in a separate report. The project limits addressed in this report are shown on Figures 1 through 3.

We have organized this report into several sections. The first three sections describe the purpose and scope of our work and our understanding of the project. The fourth section presents the site subsurface conditions. Figures illustrating site and project features are presented at the end of the text. Field data are presented in Appendix A, geotechnical laboratory test results are presented in Appendix B, and logs of relevant historical explorations are provided in Appendix C.

2.0 PURPOSE AND SCOPE OF WORK

The purpose of our work is to provide the SPU Project Team with subsurface information to support design of the proposed project features.

Our scope of work for this project included:

- Reviewing readily available geotechnical/geologic information for the project site and vicinity;
- Completing a geotechnical exploration program including 16 soil borings;
- Completing geotechnical laboratory testing; and,
- Preparing this geotechnical data report summarizing our investigation.

3.0 SITE AND PROJECT UNDERSTANDING

3.1 SURFACE CONDITIONS

The proposed work is in Dead Horse Canyon, an approximately 35-acre natural area in southeast Seattle which is generally bounded by Holyoke Way S to the north, Rustic Road S to the east, 69th Place S and 71st Place S to the south and 68th Place S and Waters Avenue S to the west. Dead Horse Canyon, which is part of Lakeridge Park and is under the jurisdiction of Seattle Parks and Recreation (Parks), consists of an approximately 2,600-foot-long, 500-foot-wide, and 50- to 130-foot-deep north-south oriented ravine that is densely vegetated with mature conifers and deciduous trees and low growing brush. Privately owned parcels, which are generally occupied by single family residences, are

located along the top of the ravine, and abut the east, south and west boundaries of the Lakeridge Park parcel.

The ground surface along the top of the ravine varies from elevation 270 feet at the south to elevation 215 feet at the north. Taylor Creek flows from south to north along the bottom of the ravine dropping from approximately elevation 230 feet at the southern extent of the east and west forks of the creek to 185 feet at the confluence of the east and west forks and elevation 75 feet at Holyoke Way S. After passing under Holyoke Way S, Taylor Creek continues to flow north for approximately 0.2 miles to Lake Washington. In general, the east slope of the ravine has a constant inclination from top to bottom, while the west slope of the ravine tends to be steep near the top of the slope, flatter near mid slope and becomes steeper again near the bottom of the slope. All elevations in this report are referenced to the NAVD88 datum, unless noted otherwise.

An approximately 4- to 6-foot-wide aggregate surfaced trail begins at Holyoke Way S and follows the west slope of the ravine south for approximately 1,700 feet where it splits with one trail continuing along the west slope of the ravine and the other trail crossing Taylor Creek to the east slope of the ravine. The two trails continue south and reconnect near the confluence of the east and west forks of Taylor Creek to form an approximately 1,100-foot-long loop. In general, the trail is approximately 20 to 40 feet above Taylor Creek. A 10-inch diameter sanitary sewer line that is owned by SPU is buried beneath the trail on the west slope of the ravine between Holyoke Way S and the trail junction at 1,700 feet. The sewer then crosses Taylor Creek and continues south beneath the trail on the east slope of the ravine.

3.2 Project Understanding

We understand that the proposed project scope within Dead Horse Canyon includes building wood structures in Taylor Creek to stabilize the channel and capture sediment and installing surface mounted stormwater drainpipes (tightlines) along the east slope of the ravine to reduce erosion. SPU has developed two potential options for providing access into Dead Horse Canyon to install the wood structures in Taylor Creek. One option includes an approximately 2,460-foot-long temporary access road that generally follows the existing trail alignment along the west slope of the ravine between Holyoke Way S and the confluence of the east and west forks of Taylor Creek then follows the trail alignment along the east slope of the ravine before terminating on the south side of the east fork. This option also includes a 240-foot-long temporary spur road that follows a portion of the trail alignment along the east slope of the ravine. The other option includes a temporary access road that follows the same alignment as the 2,460-foot-long temporary access road, but terminates approximately 1,250 feet south of Holyoke Way S. The proposed temporary access roads would have a 12-foot-wide aggregate surface and the proposed temporary spur road would have a 10-foot-wide aggregate surface. The

proposed alignments of the temporary access and spur roads are shown on Figures 1 through 3.

3.3 HISTORICAL LANDSLIDES

Based on our review of the Known Slide Environmental Critical Area (ECA) layer in the City of Seattle GIS online geodatabase, which includes information for landslides that have been reported in Seattle between 1890 and 2019, one historical landslide is mapped along the top of the west slope of the ravine upslope of the proposed alignment of both temporary access road options. Three historical landslides are mapped near the top of the ravine at locations that are not upslope of the proposed alignment of the temporary access and spur roads. Based on our review of other landslide related ECA layers in the City of Seattle GIS online geodatabase, most of the east and west slopes of the ravine are mapped as steep slope and/or potential slide ECAs. Steep slope ECAs are defined as slopes with an incline of 40 percent or more and a vertical elevation change of at least ten feet. Potential slide ECAs are defined as areas with indications of past landslide activity, such as landslide headscarps and sidescarps, hummocky terrain, areas with geologic conditions that can promote earth movement, and areas with signs of potential landsliding, such as springs, groundwater seepage, and bowed or backtilted trees. The location of landslide related ECAs that are mapped in the vicinity of Dead Horse Canyon are shown on Figure 1.

In 2005, the United States Geological Survey (USGS) (Schulz, 2005) used LIDAR imagery to create a landslide inventory map for Seattle. Based on landforms visible in the LIDAR imagery, possible headscarps, landslide deposits, and denuded slopes were identified. The historical landslides identified using LIDAR were compared to data from a landslide inventory based on historical records (Shannon and Wilson, Inc., 2003) to develop a relationship between landslide potential and the identified landslide landforms plus an additional landform representing the areas within Seattle where no landslide-related landforms were observed.

Schulz proposes that because future landslide activity in Seattle is expected to be similar in type and location to recent activity, projections can be made about the relative likelihood of landslides within a given area. The results of the study indicate that compared to areas where no landslide-related landforms have been observed, the likelihood of future landslides is 244, 86, and 47 times greater within areas mapped as headscarps, landslide deposits, and denuded slopes, respectively. As shown on Figure 2, the east and west slopes of the ravine are generally mapped within the three landslide-related landforms identified by Schulz, indicating that landslides are 47 to 244 times more likely to occur along these slopes when compared to slopes in Seattle where no landslide related landforms have been observed.

4.0 SUBSURFACE CONDITIONS

We based our interpretation of subsurface conditions at the project site on published geologic maps, information obtained from new and historical subsurface explorations, and laboratory tests on select soil samples. Figure 3 shows the mapped geology and the location of the new and historical explorations. We prepared a generalized subsurface profile along the proposed centerline of the 2,460-foot-long temporary access road based on our interpretation of the subsurface stratigraphy. The profile is shown on Figure 4. The proposed alignment of the temporary access road is shown on Figures 1 through 3.

The information provided in this report is based on subsurface soil conditions interpreted from these explorations. The nature and extent of variations between the explorations and current conditions may not become evident until additional explorations are completed, or construction begins. If variations are encountered, it will be necessary to reevaluate the information provided in this report.

4.1 GENERAL GEOLOGY

The general geologic condition of the Puget Sound region is a result of glacial and non-glacial activity that occurred over the course of millions of years. The most recent glacial activity in the Puget Sound area was the Vashon stade of the Fraser glaciation that ended about 10,000 years ago. Between each glaciation, non-glacial erosion and deposition shaped the region.

Review of the geologic map of Seattle (Troost, et al, 2005) indicates that the ravine is underlain by a sequence of glacial and non-glacial deposits with the youngest deposits along the top of the ravine and the oldest deposits near the bottom of the ravine.

The geologic map indicates the ravine is underlain by the following geologic units generally listed in order of highest to lowest elevation: Vashon subglacial till, Vashon advance outwash, Lawton Clay, pre-Olympia glacial diamict, pre-Olympia glacial fine-grained, pre-Olympia non-glacial, pre-Olympia glacial coarse grained, and pre-Olympia glacial till. These geologic units have been overridden by glacial ice and as a result, are over consolidated and generally dense to very dense or very stiff to hard.

Vashon subglacial till, pre-Olympia glacial diamict and pre-Olympia glacial till generally consist of a poorly sorted mix of silt, sand, and gravel that was deposited beneath a glacier. Lawton Clay and pre-Olympia glacial fine-grained deposits generally consist of laminated to massive silt and clayey silt that was deposited in lowland proglacial lakes. Vashon advance outwash and pre-Olympia glacial coarse-grained deposits generally consist of sand and gravel that was deposited in front of an advancing glacier or behind retreating glacier. pre-Olympia non-glacial deposits can consist of silt, clay, sand, or gravel of non-glacial origin that has been overridden by glacial ice.

The geologic map also indicates that a layer of landslide or mass wastage deposits could be present at the ground surface along all slopes within the ravine. Landslide and mass

wastage deposits consist of soil located on steep slopes that has been transported downslope by gravity. These deposits have not been overridden by glacial ice. The density and composition of landslide and mass wastage deposits are highly variable.

The subsurface conditions encountered in our explorations and indicated by the historical exploration logs generally agree with the mapped geology and the geologic history at the site.

4.2 SOIL CONDITIONS

We grouped the soil encountered in the new and historical explorations into the following soil units based on physical and behavioral characteristics:

4.2.1 Soil Unit 1

Soil unit 1 consists of a variable mixture of very soft to stiff silt and clay with variable amounts of sand and gravel. Soil Unit 1 includes fine-grained soil that was deposited fluvially by Taylor Creek (alluvium) and fine-grained native source material that has been reworked by human activity (fill) or natural processes (mass wastage and landslide deposits).

4.2.2 Soil Unit 2

Soil Unit 2 consists of a variable mixture of loose to medium dense silty sand with variable amounts of gravel. Soil Unit 2 includes coarse-grained soil that was deposited fluvially by Taylor Creek (alluvium) and coarse-grained native source material that has been reworked by human activity (fill) or natural processes (mass wastage and landslide deposits).

4.2.3 Soil Unit 3

Soil Unit 3 consists of dense to very dense silty sand with variable amounts of gravel and cobbles. It includes glacially overridden Vashon glacial till, pre-Olympia glacial till and pre-Olympia glacial diamict deposits.

4.2.4 Soil Unit 4

Soil Unit 4 consists of dense to very dense sand with silt and gravel to silty sand with gravel. It includes glacially overridden Vashon advance outwash and pre-Olympia glacial coarse-grained deposits.

4.2.5 Soil Unit 5

Soil Unit 5 consists of stiff to hard silt and clay. It includes glacially overridden Lawton Clay and pre-Olympia glacial fine-grained deposits.

4.2.6 Soil Unit 6

Soil Unit 6 consists of medium stiff to stiff silt and clay or medium dense to dense sand to silty sand. It includes glacially overridden pre-Olympia non-glacial deposits.

4.3 GROUNDWATER CONDITIONS

During drilling, we encountered groundwater between approximately 7 and 20 feet below ground surface in borings B-302, B-304, B-305, B-311, B-312, B-313 and B-314. In general, we interpret the groundwater we encountered as being perched on top of low permeability soil including Soil Units 3, 5 and 6. We anticipate that groundwater level fluctuates throughout the year and is generally highest during the late winter and spring seasons and lowest during the late summer and early fall seasons.

5.0 LIMITATIONS AND ADDITIONAL SERVICES

This report was prepared in accordance with generally accepted professional principles and practices in the field of geotechnical engineering at the time the report was prepared. This report does not include geotechnical engineering recommendations or conclusions based on the data obtained.

This geotechnical data report is intended to provide information to support preliminary engineering activities for this project. The data presented are from observed conditions during subsurface explorations and through laboratory testing of subsurface materials at the specific locations and depths indicated, using the means and methods described in this report. Subsurface conditions, as derived from exploration logs and test results, presented in this report should not be construed as a warranty of the subsurface conditions.

O+O-----

We appreciate the opportunity to be of service.

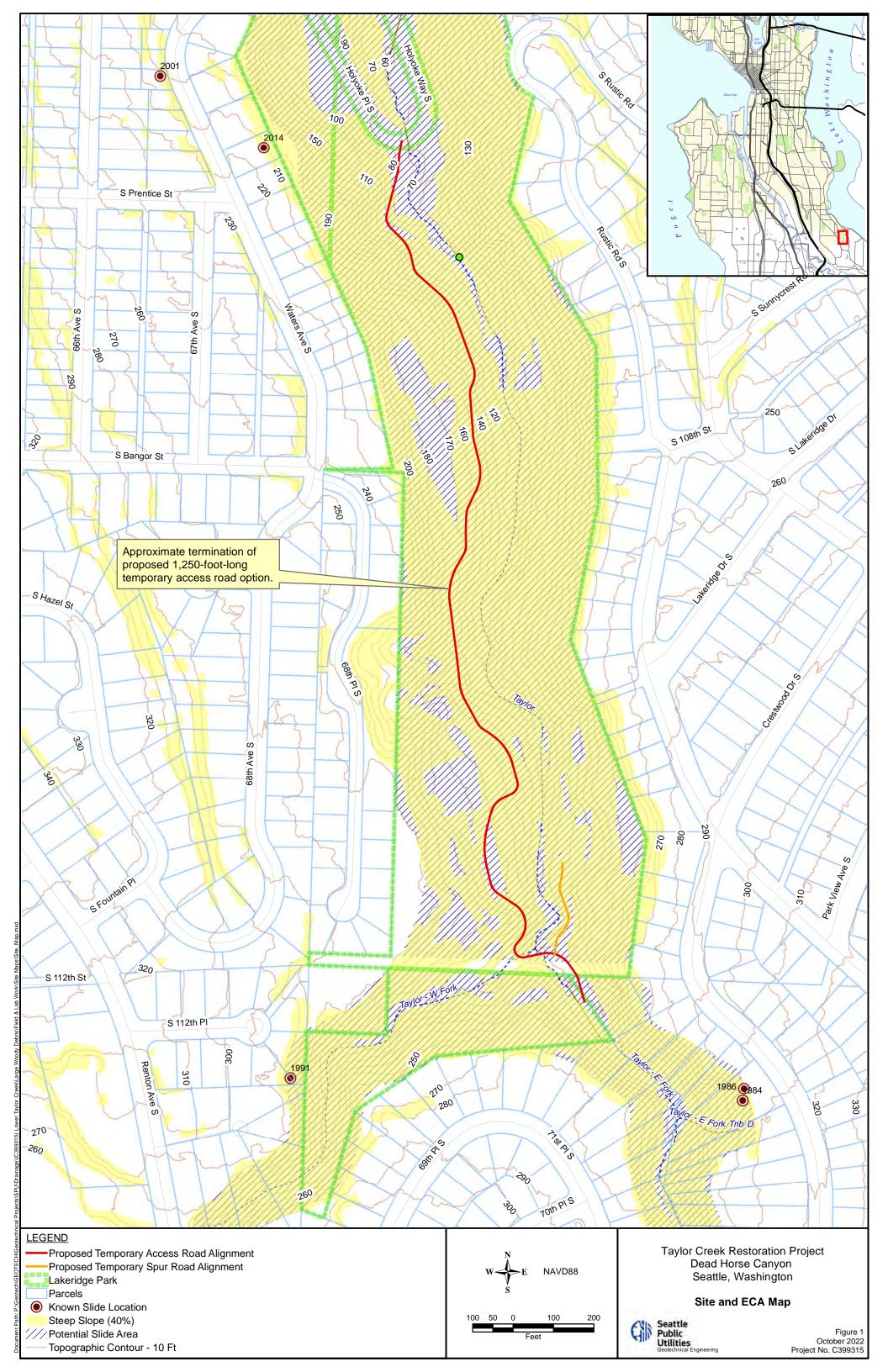
Sincerely,

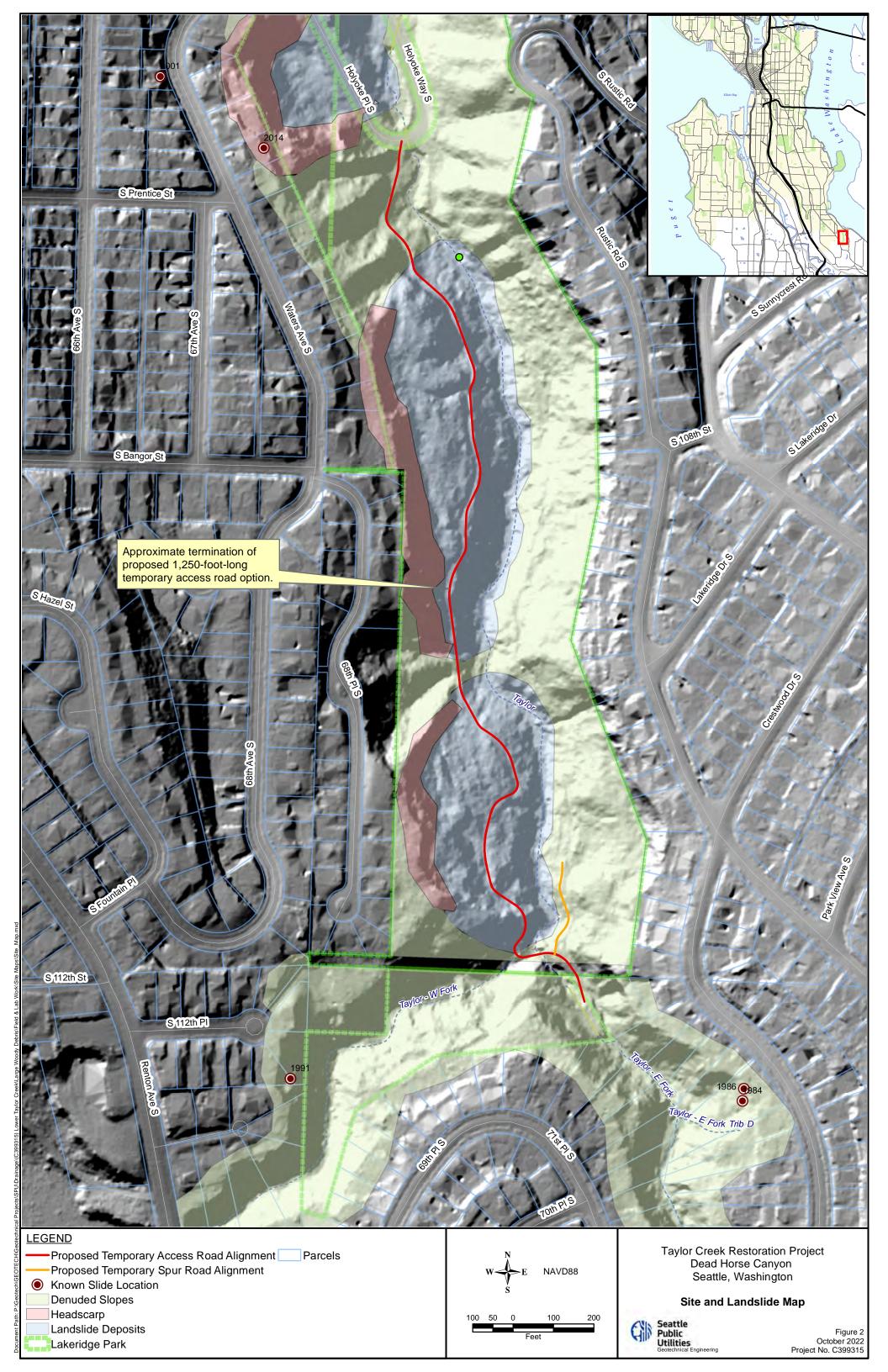
he like

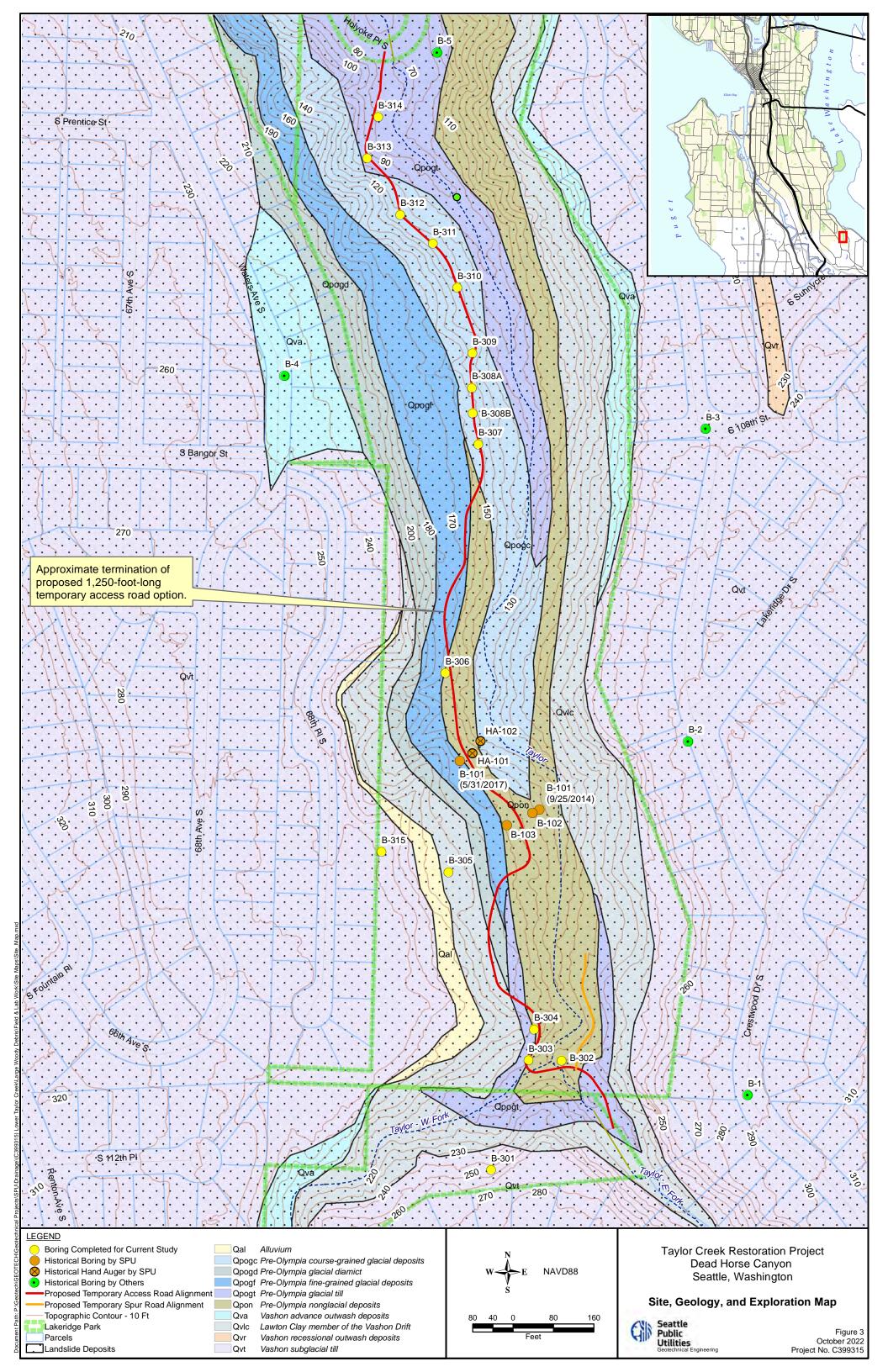
SPU GEOTECHNICAL ENGINEERING

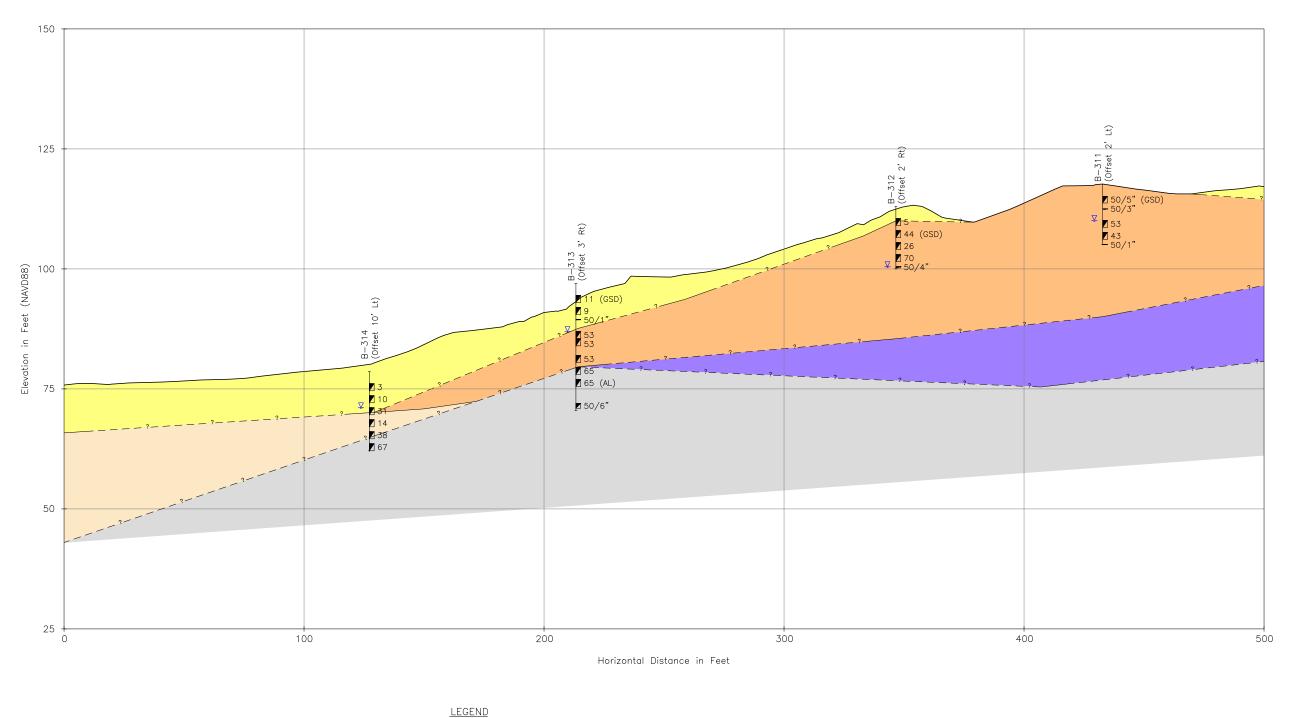
Aaron Clark, L.G.

Senior Geologist

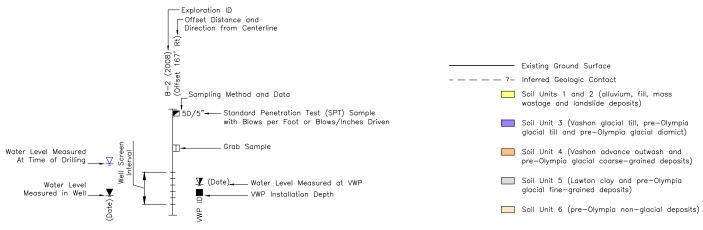

Megan Higgins, P.E.

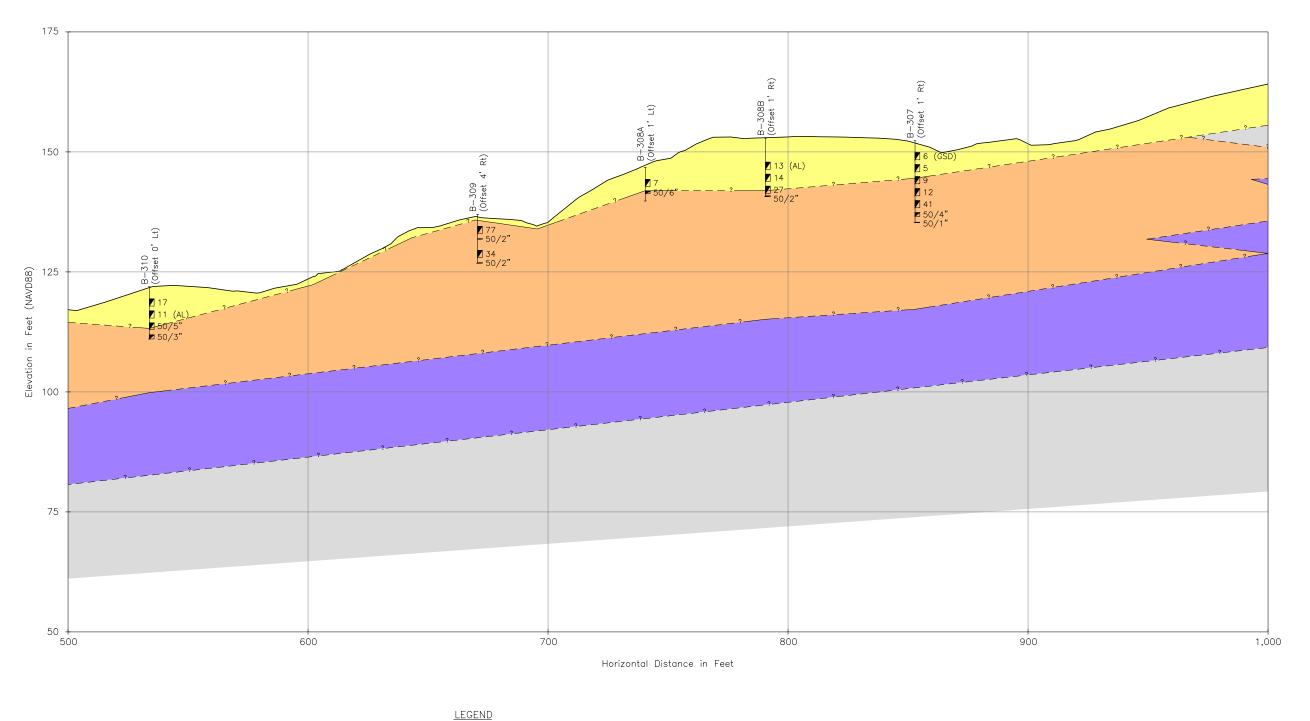

Mex 1/85

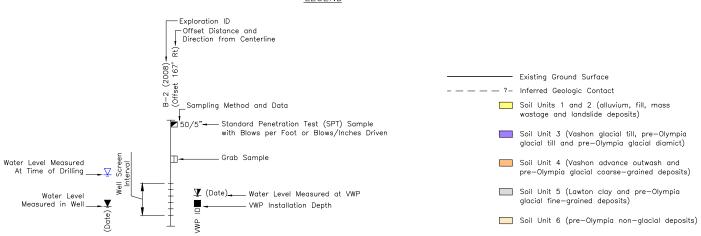

Senior Geotechnical Engineer


6.0 REFERENCES

- ASTM International, 2020. American Society of Testing Materials Annual Book of Standards, Vol. 4.08, West Conshohocken, PA.
- Gallaster, R.W., and Laprade, W.T., 1991. Geology of Seattle, Washington, United States of America, in: Bulletin of the Association of Engineering Geologists, Vol. 28, No. 3, 1991, pp. 235-302.
- Schulz, W.H., 2005. Landslide Susceptibility Estimated from Mapping Using Light Detection and Ranging (LIDAR) Imagery and Historical Landslide Records, Seattle, Washington: U.S. Geological Survey Open-file Report 2005-1405.
- Seattle Department of Construction & Inspections GIS. City of Seattle, Online Geodatabase: http://seattlecitygis.maps.arcgis.com. Accessed October 2022.
- Shannon and Wilson, Inc., 2003. Seattle Landslide Study Update, Addendum to the Seattle Landslide Study, Stability Improvement Areas. Prepared for Seattle Public Utilities, Seattle, Washington.
- Troost, K.G., Booth, D.B., Wisher, A.P., and Shimel, S.A., 2005. The geologic map of Seattle U. S. Geological Survey Open file report 2005-1252, scale 1:24,000.
- Washington Geologic Information Portal. Washington Department of Natural Resources, Online Geodatabase: https://geologyportal.dnr.wa.gov/. Accessed April 2021.

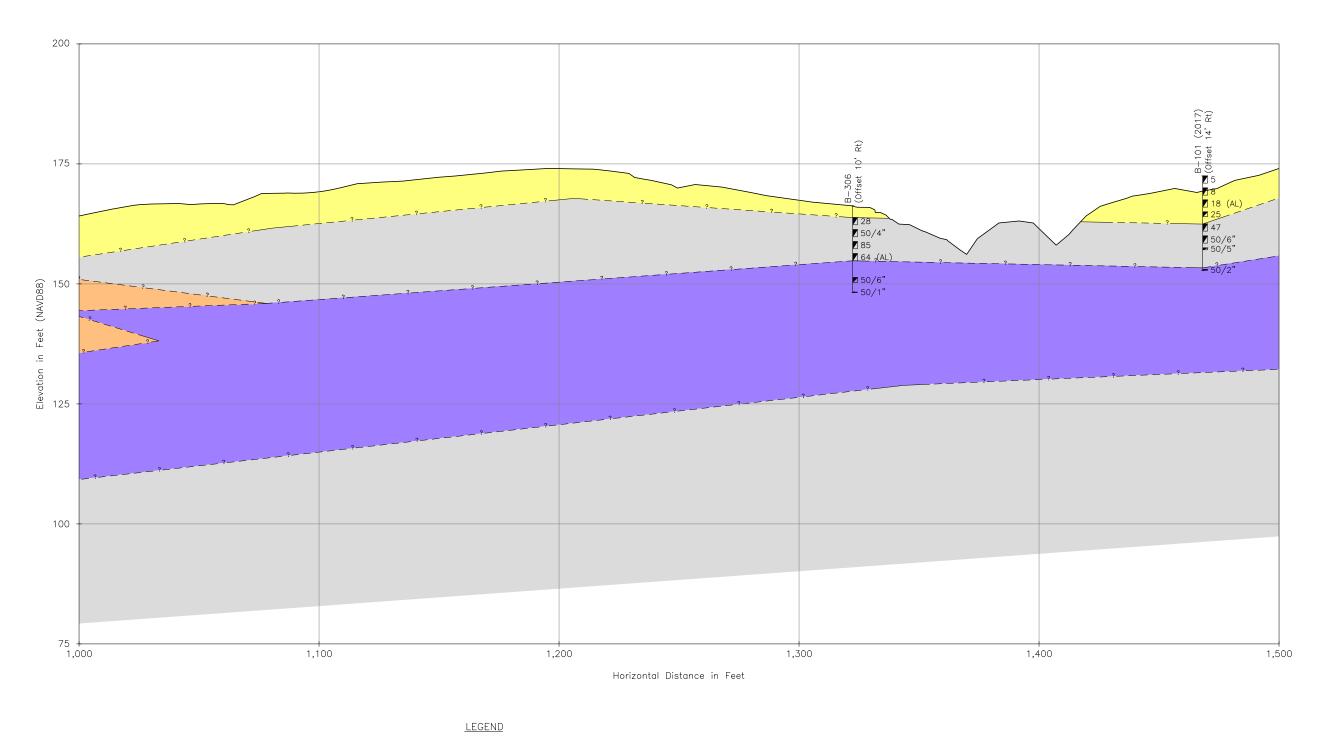





Taylor Creek Restoration Dead Horse Canyon Seattle, Washington

Generalized Subsurface Profile Along Access Road Centerline

Figure 4 (Sheet 1 of 5) October2022 C399315



Taylor Creek Restoration Dead Horse Canyon Seattle, Washington

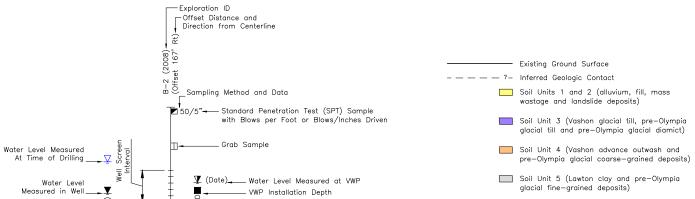
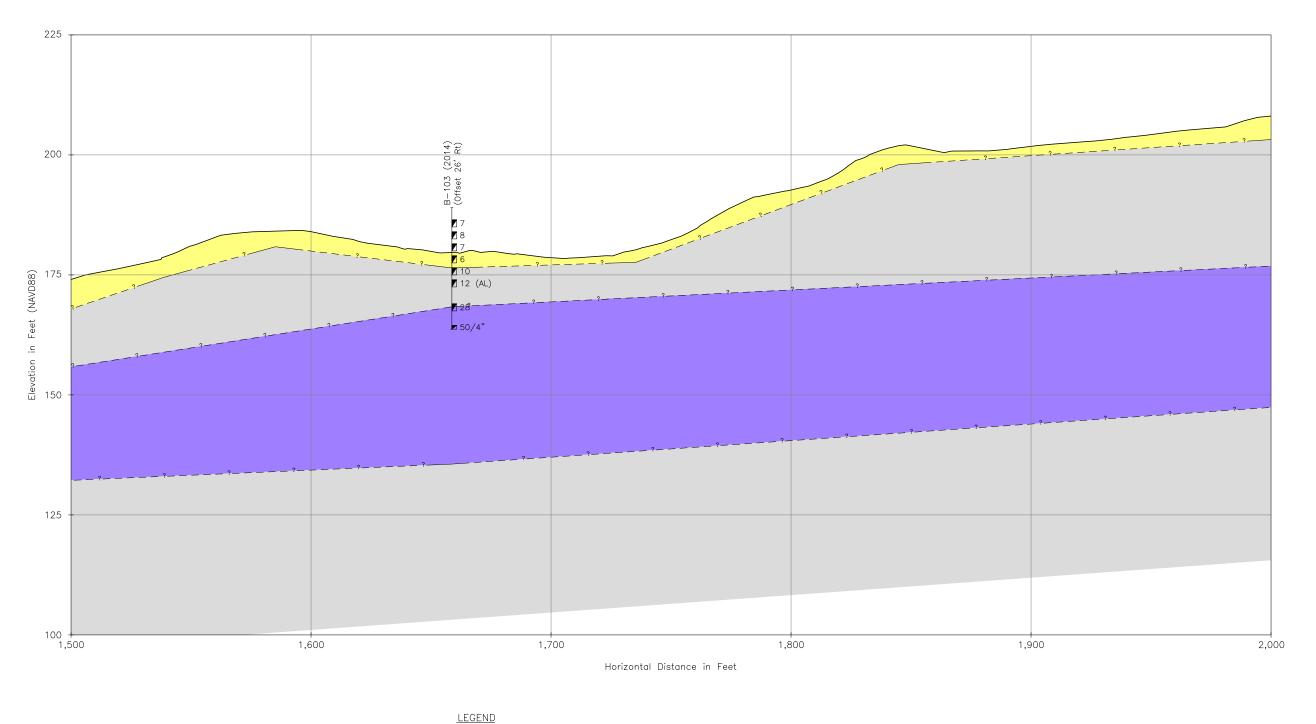
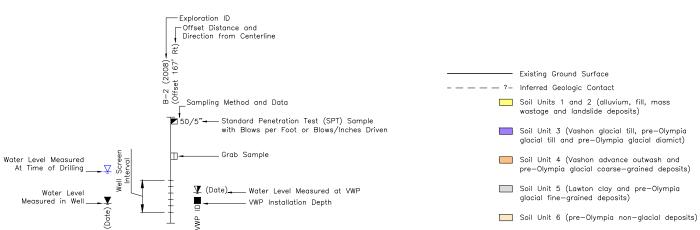

Generalized Subsurface Profile Along Access Road Centerline

Figure 4 (Sheet 2 of 5) October2022 C399315

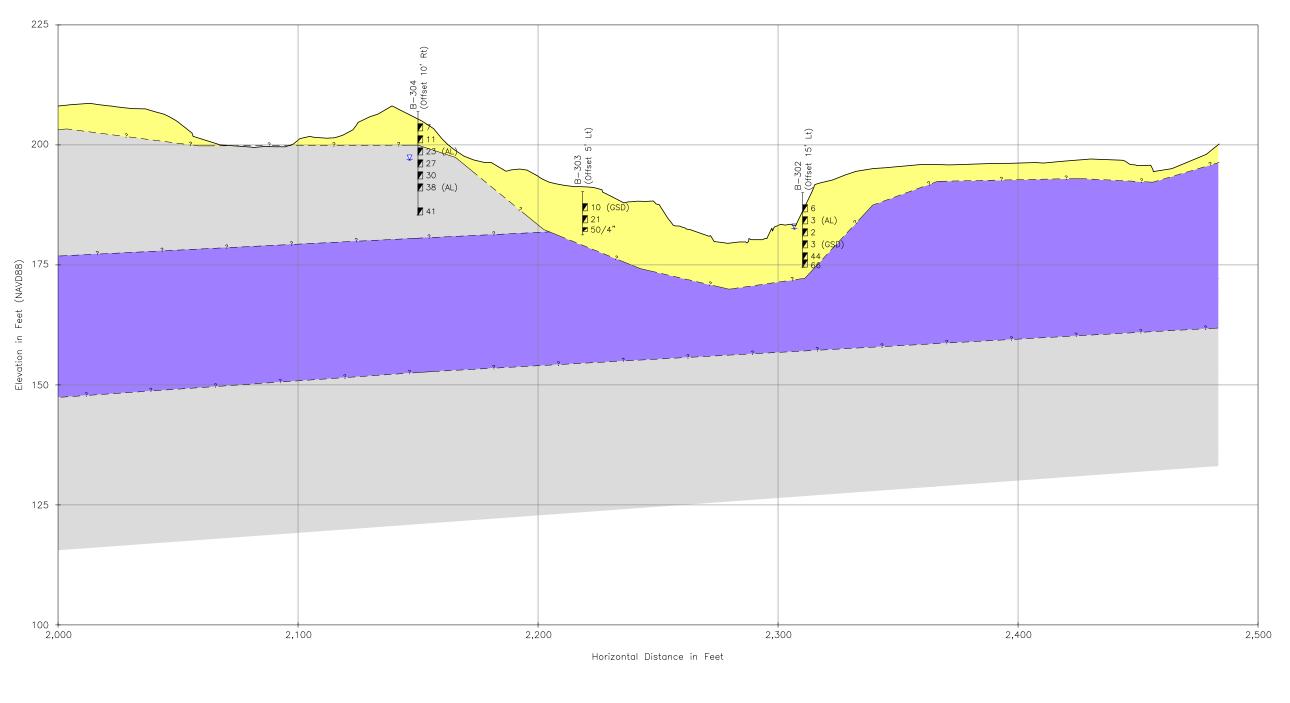
Soil Unit 6 (pre-Olympia non-glacial deposits)




Taylor Creek Restoration
Dead Horse Canyon
Seattle, Washington

Generalized Subsurface Profile Along Access Road Centerline

Figure 4 (Sheet 3 of 5) October2022 C399315



Taylor Creek Restoration Dead Horse Canyon Seattle, Washington

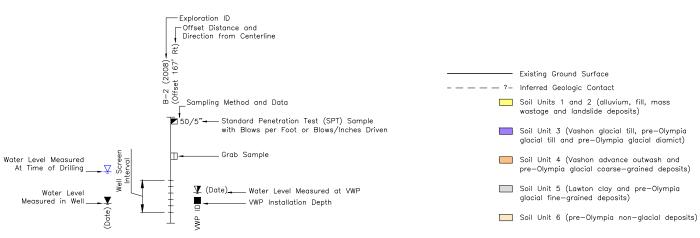

Generalized Subsurface Profile Along Access Road Centerline

Figure 4 (Sheet 4 of 5) October2022 C399315

Taylor Creek Restoration
Dead Horse Canyon
Seattle, Washington

Generalized Subsurface Profile Along Access Road Centerline

Figure 4 (Sheet 5 of 5) October2022 C399315

APPENDIX A FIELD EXPLORATION PROGRAM

APPENDIX A

FIELD EXPLORATION PROGRAM

GEOTECHNICAL SOIL BORINGS

Subsurface conditions for the current study were explored using hollow stem auger (HSA) drilling techniques. 16 borings, B-301 through B-307, B-308A, B-308B, and B-309 through B-315, were completed to depths ranging from 7 to 26.5 feet between April 13 and April 21, 2021. The approximate location of the explorations is shown on Figure 1 in the main body of the text. The explorations were located relative to prominent features in the area. The approximate ground surface elevations at the exploration locations are referenced to the NAVD88 datum.

All borings were drilled by Geologic Drill Partners. Borings B-301 through B-305 were drilled using a hand carried Acker drill rig with a 2½-inch inner diameter (ID) HSA. Borings B-306 through B-315 were drilled using an MT-55 tracked drill rig with 4½-inch ID HSA. The results of the explorations are summarized on the individual summary boring logs, which are included here as Figures A-2 through A-17. A key to the symbols and terms used on the summary logs is presented as Figure A-1.

Soil samples were obtained from all borings at 2.5-foot and 5-foot depth intervals using the Standard Penetration Test (SPT, ASTM D-1586). The 2.0-inch outside diameter (OD) SPT sampler was driven into the soil a distance of 18 inches using a 140-pound drive automatic trip hammer or cathead falling a distance of 30 inches. Recorded blows for each 6 inches of sampler penetration (blow counts) are shown on the summary logs in this appendix. The blow counts provide a qualitative measure of the relative density of cohesionless soil, or the relative consistency of fine-grained soils. Representative portions of all recovered samples were placed in sealed containers and transported to our laboratory for further observation and testing.

	U	NIFIED SOIL C	LASSIFICA	TION SYS	TEM - ASTM D2488
	MAJOR DIVISION		GROUP SYMBOL	LETTER SYMBOL	GROUP NAME
				GW	Well-graded GRAVEL
		GRAVEL WITH		GW	Well-graded GRAVEL WITH SAND
		≤ 5% FINES		GP	Poorly graded GRAVEL
	GRAVEL AND GRAVELLY			GP	Poorly graded GRAVEL WITH SAND
	SOILS MORE THAN 50% OF			GW-GM	Well-graded GRAVEL WITH SILT
	COARSE FRACTION	GRAVEL WITH BETWEEN 5%		GW-GC	Well-graded GRAVEL WITH CLAY
	RETAINED ON NO. 4 SIEVE	AND 15% FINES		GP-GM	Poorly graded GRAVEL WITH SILT
			;0,	GP-GC	Poorly graded GRAVEL WITH CLAY
COARSE		GRAVEL WITH		GM	SILTY GRAVEL
GRAINED SOILS		≥ 15% FINES		GC	CLAYEY GRAVEL
CONTAINS LESS THAN 50% FINES				SW	Well-graded SAND
00/01 11420	SAND AND SANDY SOILS MORE THAN 50% OF COARSE FRACTION PASSING ON NO. 4 SIEVE	SAND WITH		SW	Well-graded SAND WITH GRAVEL
		< 5% FINES		SP	Poorly graded SAND
			。	SP	Poorly graded SAND WITH GRAVEL
				SW-SM	Well-graded SAND WITH SILT
		SAND WITH BETWEEN 5% AND 15% FINES		SW-SC	Well-graded SAND WITH CLAY
				SP-SM	Poorly graded SAND WITH SILT
				SP-SC	Poorly graded SAND WITH CLAY
		SAND WITH		SM	SILTY SAND
		≥ 15% FINES		sc	CLAYEY SAND
				ML	Inorganic SILT, low plasticity
				ML	Inorganic SILT WITH SAND, low plasticity
FINE		LIQUID LIMIT <u>LESS</u> THAN 50		CL	Lean inorganic CLAY, low plasticity
GRAINED SOILS	SILT AND			CL	Lean inorganic CLAY WITH SAND, low plasticity
CONTAINS MORE THAN 50% FINES	CLAY			OL	ORGANIC SILT, low plasticity
55/61 11120		LIQUID LIMIT		MH	Elastic inorganic SILT, moderate to high plasticity
		GREATER THAN 50		СН	Fat inorganic CLAY, moderate to high plasticity
				ОН	ORGANIC SILT or CLAY, moderate to high plasticity
	HIGHLY ORGAN	IC SOILS	\(\frac{\lambda \lambda_1}{\lambda \lambda \lambda} \frac{\lambda \lambda_1}{\lambda \lambda \lambda \lambda} \frac{\lambda \lambda_1}{\lambda \lambda \lamb	PT	PEAT soils with high organic contents
	TOPSOIL		71/2 71/2 71/2	TP	TOPSOIL

NOTES:

- Sample descriptions are based on visual field and laboratory observations using classification methods of ASTM D2488. Where laboratory data are available, classifications are in accordance with ASTM D2487.
- 2. Solid lines between soil descriptions indicate change in interpreted geologic unit. Dashed lines indicate stratigraphic change within the unit.
- 3. Fines are material passing the U.S. std. #200 sieve.

SOIL CLASSIFICATION AND EXPLORATION LOG KEY

SAMPLING METHOD 2" OD SPT Split Spoon Sample with 140 lb hammer falling 30" (ASTM D1587) No Recovery Shelby Tube Sample (ASTM D1587) 3" OD Split Spoon Sample with 300 lb hammer falling 30" Grab Sample Non Standard (As noted on log)

 \boxtimes

Core Run

LABOR	ATORY TESTS
AL	Atterberg Limits
FC	Fines Content
GSD	Grain Size Distribution
ENV	Environmental Testing
SG	Specific Gravity
MD	Moisture Density Relationship
С	Consolidation
UU	Unconsolidated Undrained Triaxial
CU	Consolidated Undrained Triaxial
CD	Consolidated Drained Triaxial
UCS	Unconfined Compression Strength
PERM	Hydraulic Conductivity Test
PP	Pocket Penetrometer
TV	Torvane
DS	Direct Shear
ORG	Organic Content
PID	Photoionization Detector Reading

COMPONENT	DEFINITIONS
Boulders	Larger than 12 in.
Cobbles	3 in. to 12 in.
Gravel	3 in. to No. 4 (4.75 mm)
Coarse Gravel	3 in. to 3/4 in.
Fine Gravel	3/4 in. to No. 4 (4.75 mm)
Sand	No. 4 (4.75 mm) to No. 200 (0.075 mm)
Coarse Sand	No. 4 (4.75 mm) to No. 10 (2.00 mm)
Medium Sand	No. 10 (2.00 mm) to No. 40 (0.425 mm)
Fine Sand	No. 40 (0.425 mm) to No. 200 (0.075 mm)
Silt and Clay	Smaller than No. 200 (0.075 mm)

RELATIVE DE	NSITY OF CO	ARSE-GRAINED COHE	ESIONLESS SOILS
Relative <u>Density</u>	N (blows/ft)	Approximate Relative Density (lb/ft³)	1/2" Dia. Metal Probe Penetration Depth (ft)
Very Loose	0 to 4	0 - 15	> 3
Loose	4 to 10	15 - 35	1 - 3
Medium Dense	10 to 30	35 - 65	0.3 - 1
Dense	30 to 50	65 - 85	0.1 - 0.3
Very Dense	over 50	85 - 100	< 0.1

KELATIVE CO	DNSISTENCY	OF FINE-GRAINED COI	HESIVE SOILS
Relative	N (blows/ft)	Approximate Undrained	1/2" Dia. Metal Probe
Consistency		Shear Strength (psf)	Penetration Depth (ft)
Very Soft	0 to 2	< 250	> 2
Soft	2 to 4	250 - 500	1 - 2
Medium Stiff	4 to 8	500 - 500	0.5 - 1
Stiff	8 to 15	1000 - 2000	0.25 - 0.5
Very Stiff	15 to 30	2000 - 4000	0.1 - 0.25
Hard	over 30	> 4000	< 0.1

ORGANIC C	ONTENT
<u>TERM</u>	PERCENT BY VOLUME
Occasional	0 to 1
Scattered	1 to 10
Numerous	10 to 30
Organic	30 to 50
PEAT	50 to 100

No visible water. Near optimum moisture content.

Water content prevents soil from retaining structure.

COMPONENT PROPORTIONS

MOISTURE CONTENT

Less than 5%

Dusty, or dry to the touch.

Visible free water.

5 - 15%

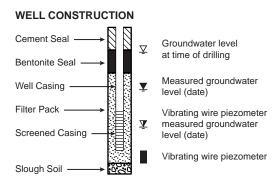
15 - 30%

Trace

Some

Few

Dry

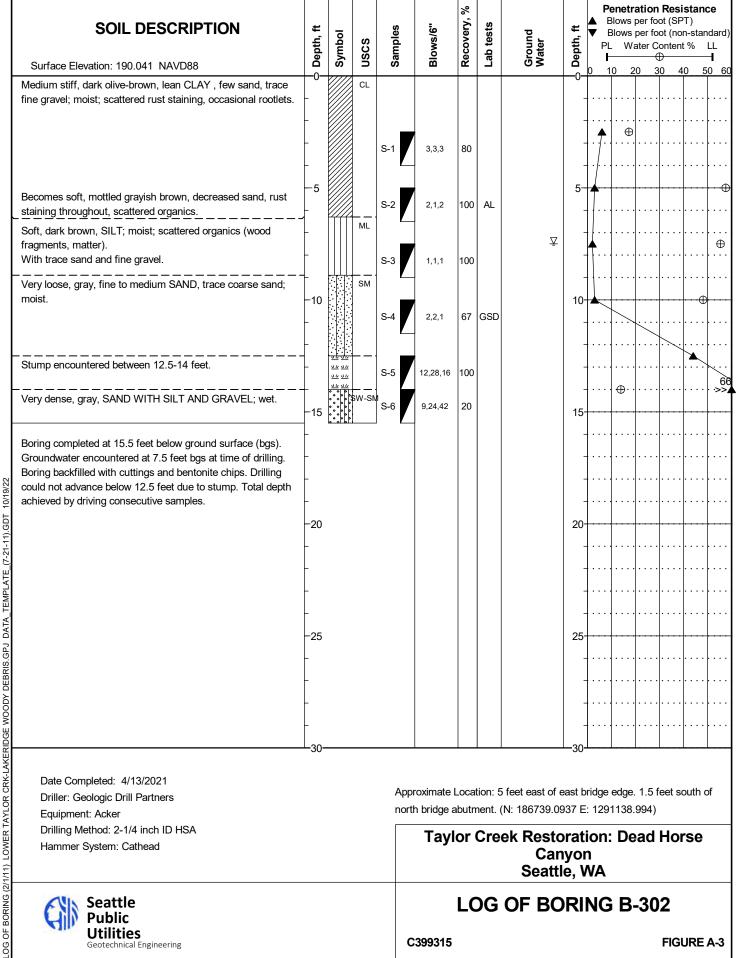

Moist

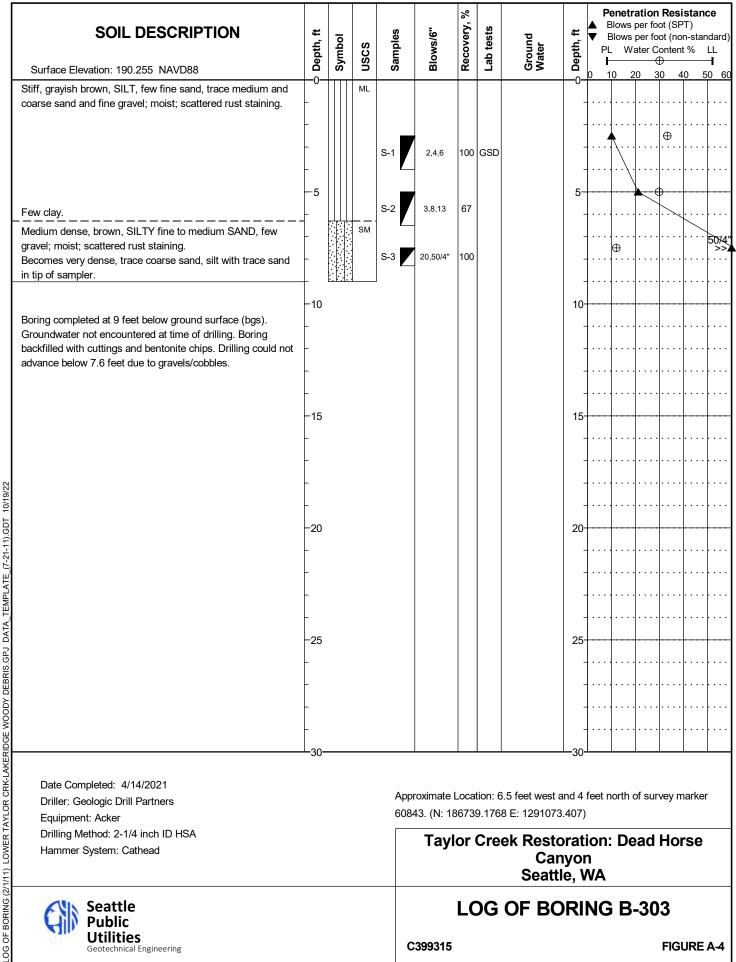
Saturated

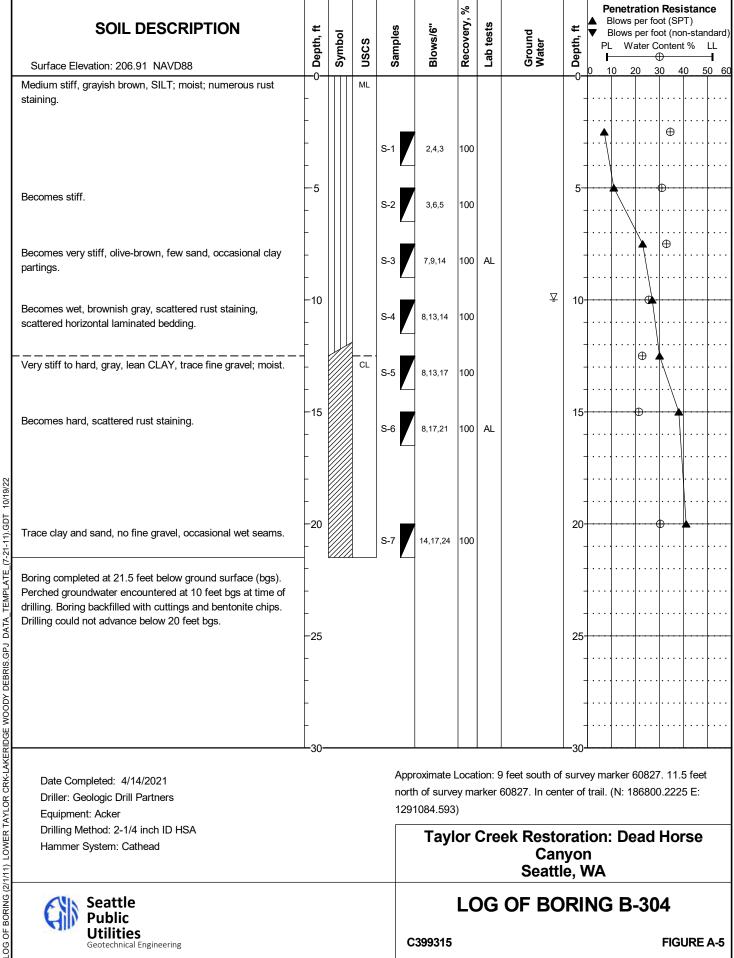
Wet

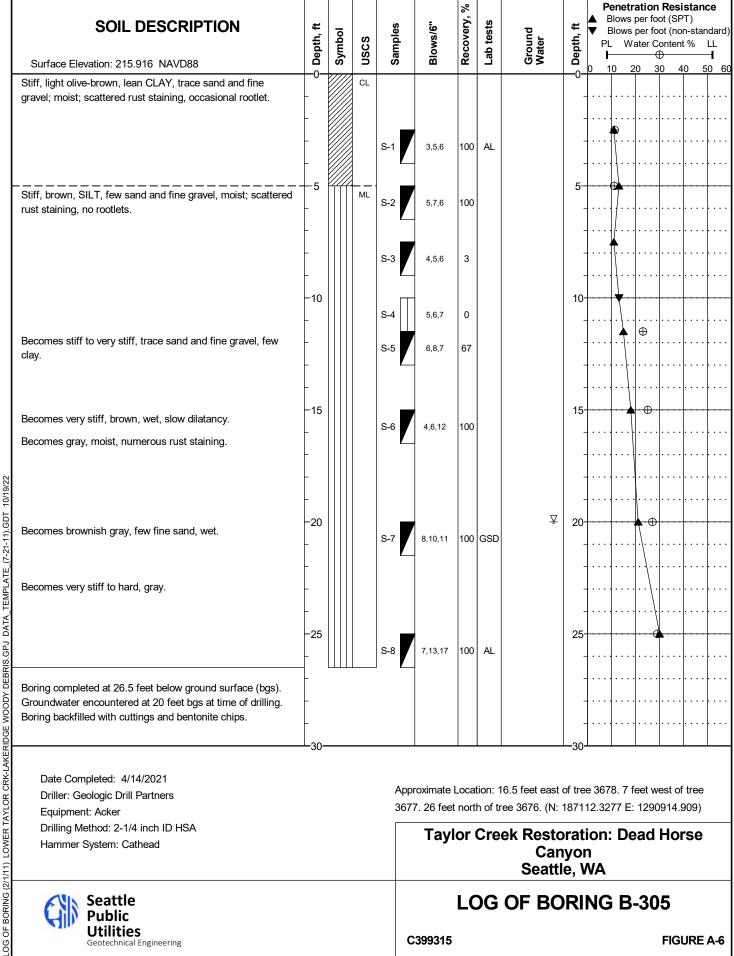
SEEPAGI	E	CAVING		CY	
Slow	A small amount of water is observed flowing from the sides of the excavation.	Slight	Soil sloughed from wall of excavation is < 6" thick.	Slow	Water appears slowly on the surface of the specimen during shaking and does not disappear or disappears slowly upon squeezing.
Moderate	Water collects in the bottom of the excavation during digging. Some bailing is needed to observe the excavation bottom.	Moderate	Soil sloughed from wall of excavation is between 6" - 12" thick.	Rapid	Water appears quickly on the surface of the specimen during shaking and disappears
Rapid	Water collects in the bottom of the excavation during digging. Bailing may be ineffective to observe the excavation bottom.	Significant	Soil sloughed from wall of excavation is >12" thick.		quickly upon squeezing.

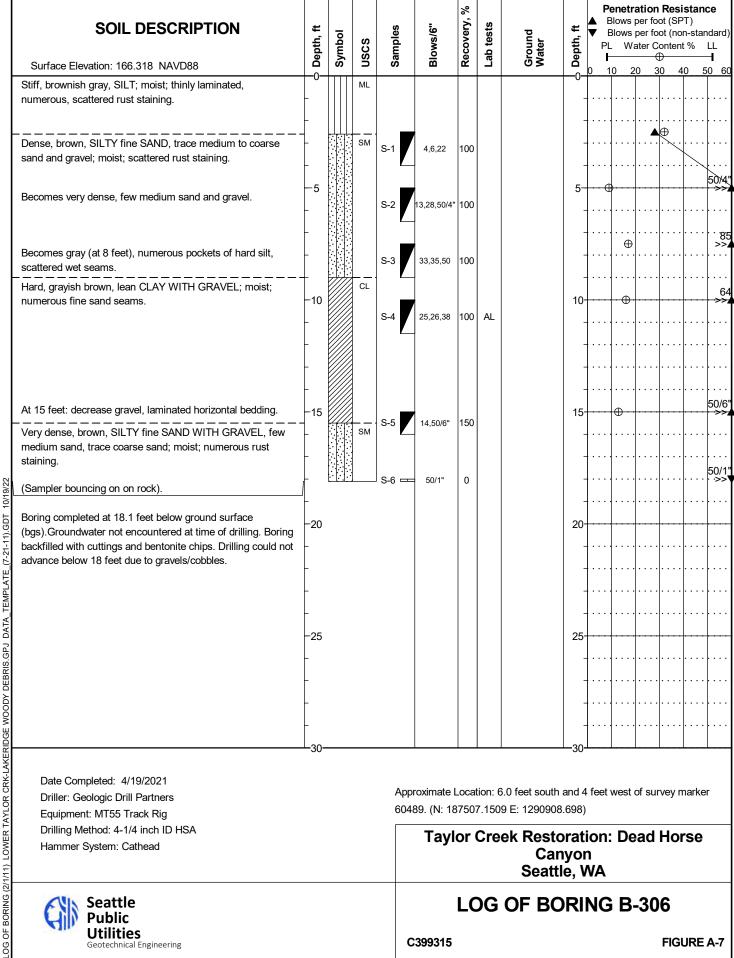
STRUCTURE												
TERM	THICKNESS OR SPACING	TERM	CRITERIA / DESCRIPTION	TERM	<u>CRITERIA</u>							
Parting	0 - 1/16" thick	Laminated	Alternating layers (< 1/2") of varying material or color	Near Horizontal	0 - 10 degrees							
Seam	1/16 - 1/2" thick	Interbedded	Alternating layers (> 1/2") of varying material or color	Low Angle	10 - 45 degrees							
Layer	1/2 - 12" thick	Fractured	Breaks easily along definite fracture planes	High Angle	45 - 80 degrees							
Pocket	Inclusions < 1" thick	Slickensided	Polished, glossy, striated fracture planes	Near Vertical	80 - 90 degrees							
Occasional	< 1 occurrence per foot	Blocky	Readily breaks into small angular lumps									
Scattered	1 > 10 occurrence per foot	Lensed	Inclusions of small pockets of different soil									
Numerous	> 10 occurrence per foot	Homogenous	Same color and appearance throughout									

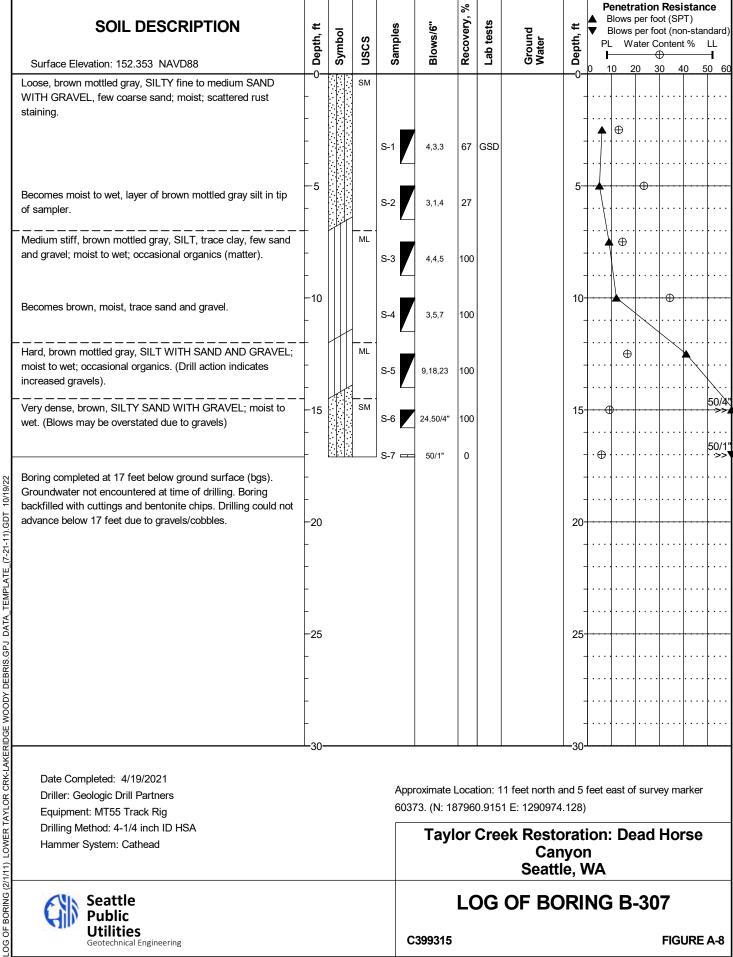

ORDER OF CLASSIFICATION TERMS

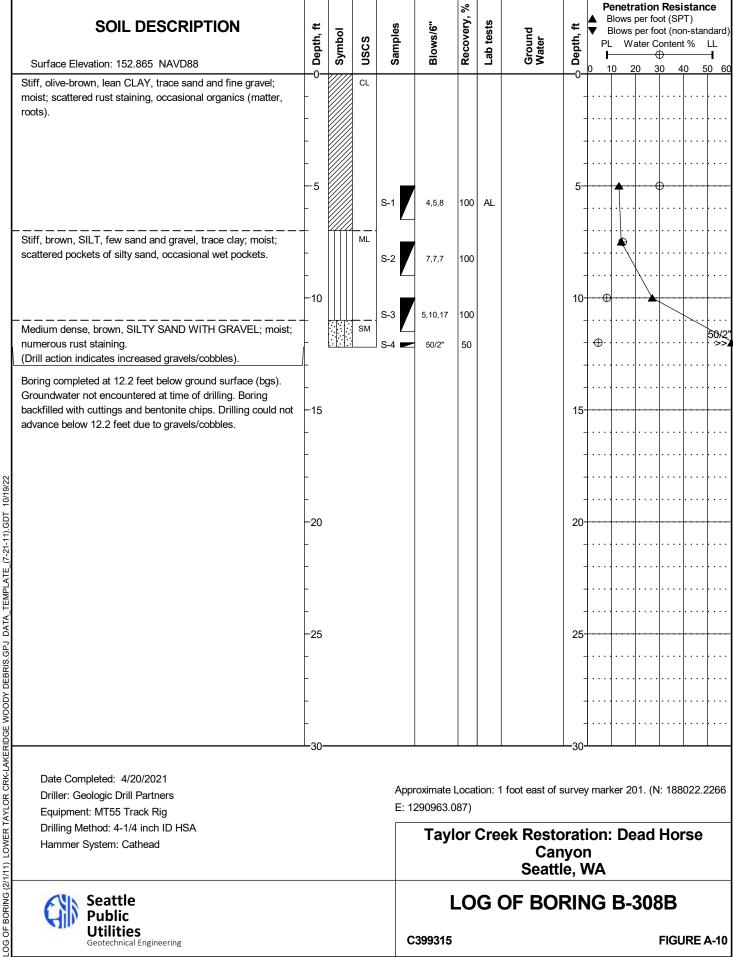

Density/consistency, color, USCS group name, minor constituent; moisture; additional comments.

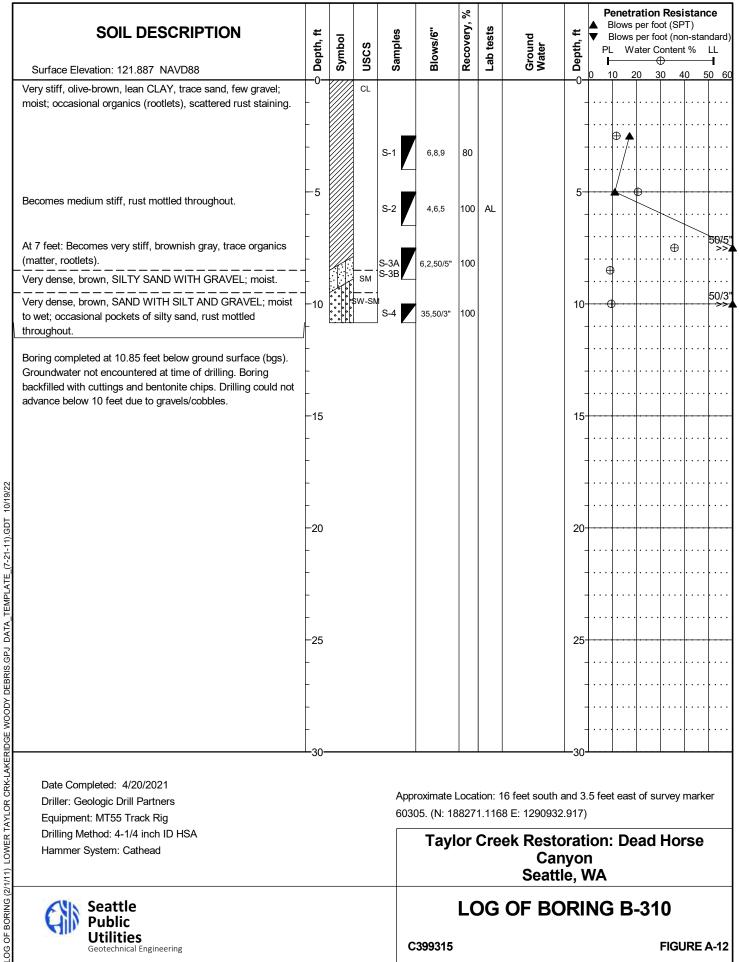

SOIL CLASSIFICATION AND EXPLORATION LOG KEY



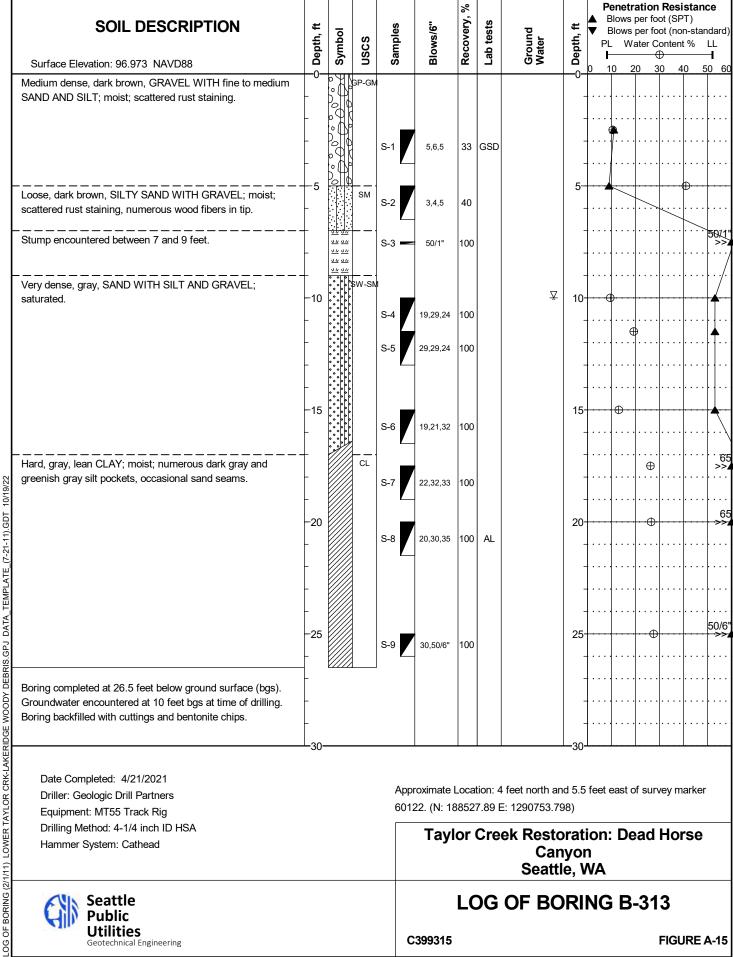

	SOIL DESCRIPTION	Depth, ft	Symbol	nscs	Samples	Blows/6"	Recovery, %	Lab tests	Ground Water	Depth, ft	•	Blo Blo	ows p	er fo er fo	onten	T) n-stai	ndard) LL
ŀ	Surface Elevation: 245.77 NAVD88 Soft to medium stiff, dark brown, fine SANDY SILT, few	 	111	ML	0,		_	_		 - ō-	0	10	20	0 3	0 4	0 5	50 60
	medium sand, trace coarse sand; moist; scattered organics.	-								-		. .					
		-				,				-	 ♠	. -	• •	· · · ·			
					S-1	2,2,2	33	GSD									
		-5								5-		<u>. </u> .		₽			<u> </u>
	Becomes medium stiff, brown, decreased sand, few gravel.	-			S-2	2,2,3	27			-	ļ'	\.					
ŀ	Medium stiff to stiff, olive-brown, lean Clay, few sand, trace	+		CL	<u> </u>					-	ļ	\ .					
	fine gravel; moist; scattered rust staining and black organic	-			S-3	2,4,4	53	AL		-	ļ	-					
	pockets.	-			-	-				-		. .					
		-10			S-4	3,4,5	7			10-				•••			1
]			· · · · ·			
		-			S-5	12,16,16	0			-	ļ.,				X		
		-			3-5	12,10,10	0			-	ļ	.				ļ	
	Becomes hard, gray, scattered light gray partings.	-15				1				15-	ļ	+		-—		\	
	2000moo mara, gray, occasiorea ngin gray parango.	-			S-6	12,20,24	67			-		. .				\.	
	N	-								-	ļ.,	. .		 ⊕			
10/19/22	Numerous light gray partings, scattered fine sand seams, occasional sub-vertical bedding.	-			S-7	12,22,29	100			-		.					
	Boring completed at 19 feet below ground surface (bgs).	-20		•						20-							
(7-21-11).GDT	Groundwater not encountered at time of drilling. Boring backfilled with cuttings and bentonite chips. Drilling could not	- 20															
E_(7-2	advance below 17.5 feet bgs.	-								-	ļ 	. .					
MPLATE		-								-	ļ	. .					
TA_TE		-								-	ļ	. .					
PJ DA		-25								25-	ļ	+		••••	• • • •		
3RIS.G		-								-		• •	• • •				
JY DE																	
WOOI											ļ.,						
RIDGE																	
LOG OF BORING (2/1/11) LOWER TAYLOR CRK-LAKERIDGE WOODY DEBRIS.GPJ DATA_TEMP	Date Completed: 4/13/2021 Driller: Geologic Drill Partners Equipment: Acker Drilling Method: 2-1/4 inch ID HSA Hammer System: Cathead					12. (N: 18	8652	2.187 ⁻	.5 feet west :	9.469)							
2/1/11) LOWE						ı ayı	or (∪re(ek Resto Car Seatt	nyor	1		 D6	ad	ПОІ	se	
F BORING (Seattle Public Utilities					LOG OF BORING B-301											
LOG 0	Geotechnical Engineering				C	399315									FIG	JRE	A-2

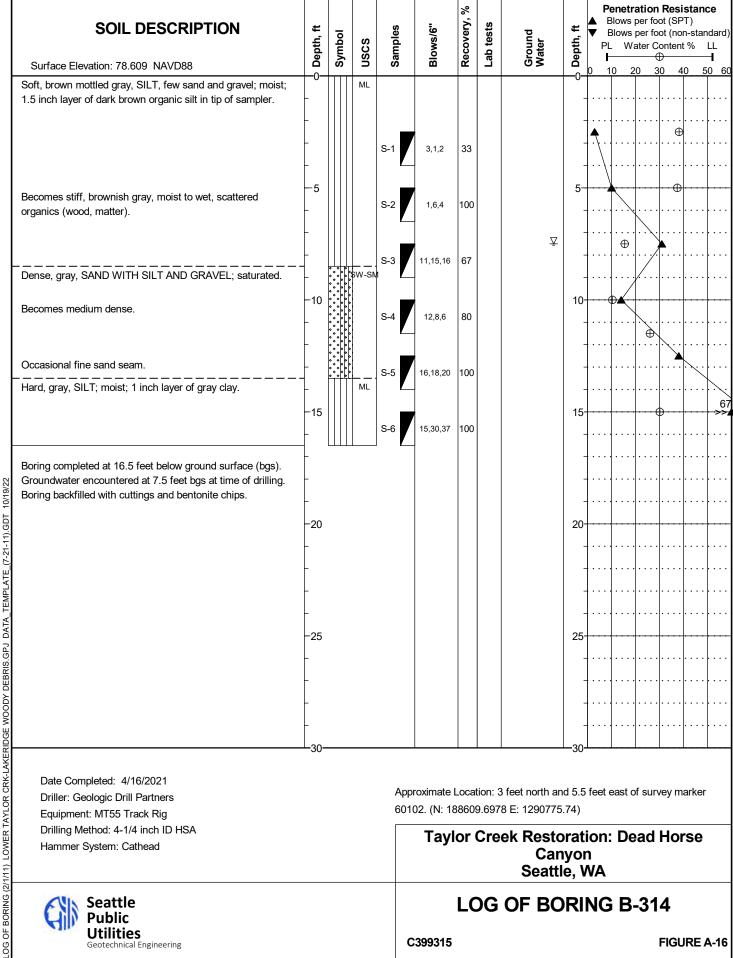


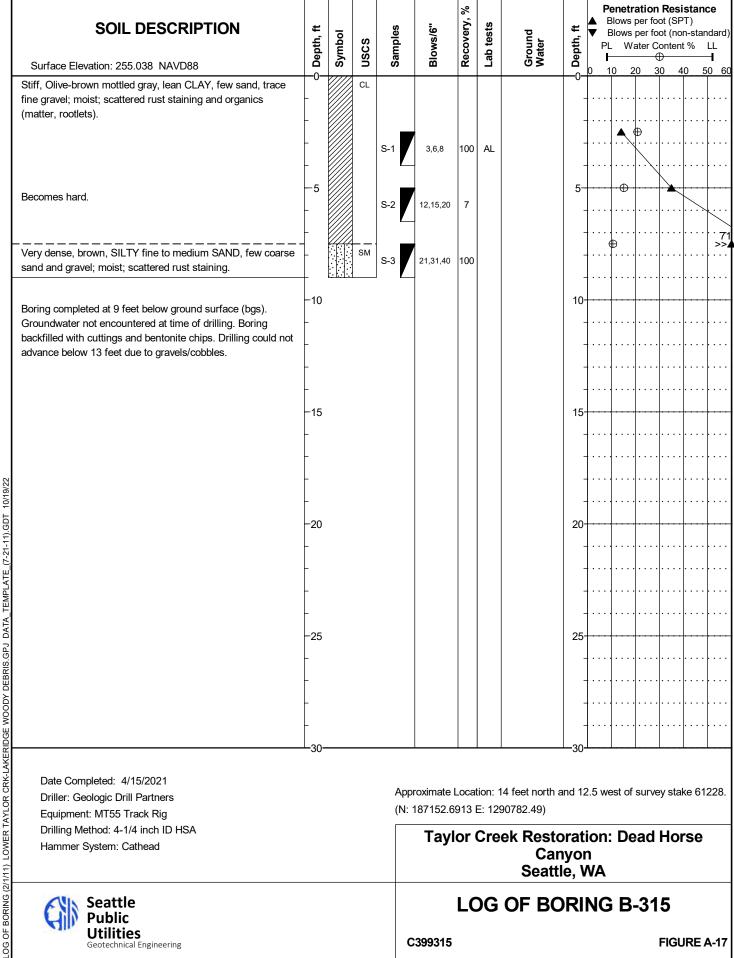




	SOIL DESCRIPTION Surface Elevation: 146.773 NAVD88	Depth, ft	Symbol	nscs	Samples	Blows/6"	Recovery, %	Lab tests	Ground Water	Depth, ft	▲ E ▼ I PI	Blows Blows L W	ater C	ot (SP ot (no onten	rT) n-star t %	ndard) LL - ¶		
	Medium stiff, brown, SILT, few fine to medium sand, trace coarse sand and gravel; moist; occasional organics (matter), scattered rust staining.	- - -		ML						-0	0 1	10 2	20 3		0 5	50 60		
	Very dense, brown, SILTY SAND WITH GRAVEL; moist;	-5		SM	S-1	2,3,4	67			5-),; •				50/6"		
	occasional organics (matter). (Drill action indicates increased gravels) Boring completed at 7 feet below ground surface (bgs).	_			0-2	33,73	20			-								
	Groundwater not encountered at time of drilling. Boring backfilled with cuttings and bentonite chips. Drilling could not advance below 7 feet due to gravels/cobbles.	-10								10-								
		<u>-</u>								-								
		- -15								15-								
10/19/22		-								-								
-ATE_(7-21-11).GDT 10/19/22		-20								20-								
ATA_TEMPLATE		-								-								
' DEBRIS.GPJ D		-25 - -								25-								
ERIDGE WOODY		30-								30-								
LOG OF BORING (2/1/11) LOWER TAYLOR CRK-LAKERIDGE WOODY DEBRIS.GPJ DATA_TEMPI	Date Completed: 4/20/2021 Driller: Geologic Drill Partners Equipment: MT55 Track Rig								.5 feet south 2 E: 129096 ²			east	of sur	vey m	narkei	r		
/1/11) LOWER TA	Drilling Method: 4-1/4 inch ID HSA Hammer System: Cathead				Taylor Creek Restoration: Dead Horse Canyon Seattle, WA													
F BORING (2)	Seattle Public					l	_0	G (OF BO	RIN	IG	B-	-308A					
0 907	Utilities Geotechnical Engineering				С	399315								FIG	JRE	A-9		




	SOIL DESCRIPTION	Depth, ft	Symbol	nscs	Samples	Blows/6"	Recovery, %	Lab tests	Ground Water	Depth, ft	▲ ¦	Blows Blows	ater C	ot (SF ot (no	PT) n-star	ce ndard) LL	
ŀ	Surface Elevation: 137 NAVD88	<u> </u>			0,	ш	-	_	<u> </u>	 -0-	0	10	20 3	80 4	0 5	50 60	
	Very dense, brown, SILTY SAND WITH GRAVEL; moist; trace to few cobbles (seen in cuttings). (Blows may be overstated due to gravels and cobbles).	_		SM]]] 	ļ]					
		_			S-1	30,27,50	13									>> 4	
		-				30,27,30	13										
		-5			S-2 🞞	50/2"	0			5-			 	ļ	ļ	50/2"	
												<u> </u>			 	[]	
	Becomes dense, brown, numerous pockets of silt.	-			S-3	7,12,22	53										
		-				.,,										50/0"	
ŀ		-10			S-4 □	50/2"	0			10-		 	 			50/2"	
	Boring completed at 10.2 feet below ground surface (bgs). Groundwater not encountered at time of drilling. Boring																
	backfilled with cuttings and bentonite chips. Drilling could not advance below 10 feet due to gravels/cobbles.	-									ļ	ļ					
		-									ļ						
		-15								15 ⁻			 				
22		-									ļ	ļ					
-ATE_(7-21-11).GDT 10/19/22		-									ļ	ļ					
11).GDT		-20								20-			 				
(7-21-																	
IPLATE		_									ļ	ļ					
TA_TEN		-									ļ	ļ					
PJ DA		-25								25			 				
BRIS.G																	
ODY DE		_									ļ	ļ					
GE WO		-									ļ	ļ					
OG OF BORING (2/1/11) LOWER TAYLOR CRK-LAKERIDGE WOODY DEBRIS GPJ DATA_TEMPI	Date Completed: 4/20/2021 Driller: Geologic Drill Partners Equipment: MT55 Track Rig	⊥ ₃₀ -							3.5 feet south 5 E: 1290962			eet east of survey marker					
2/1/11) LOWER TA	Drilling Method: 4-1/4 inch ID HSA Hammer System: Cathead					Tayl	or	Cre	ek Resto Car Seatt	ıyoı	1	: D	ead	Но	rse		
BORING (2	Seattle Public						LC	G	OF BC	RI	NG	В	-30	9			
-0G OF	Utilities Geotechnical Engineering				С	399315								FIGL	JRE A	A-11	



	SOIL DESCRIPTION	Depth, ft	Symbol	nscs	Samples	Blows/6"	Recovery, %	Lab tests	Ground Water	Depth, ft		Bl Bl	ows ows	ater C	ot (SF ot (no	PT) on-sta	ndard)
	Surface Elevation: 117.629 NAVD88 Very dense, grayish brown, SILTY SAND WITH GRAVEL;	0	Ó	SM	Ø	a	œ	Ľ	ტ ≶	_0-	0_	10	2		-	10 :	50 60
	moist; scattered pockets of brownish gray silt.	_		Sivi						_	١.,				ļ		
		_								-		 A	 Ə				50/5"
		-			S-1	4,11,50/5"	71	GSD		-		• • •					
		-								-		• • •					50/3"
	(Drill action indicates numerous gravels. S-1 and S-2 blow	-5			S-2 □	50/3"	0			5-							 >>
	counts are likely overstated due to gravels.)									_							
	Becomes brown, wet, few coarse sand, increase silt in matrix toward bottom of sample.	_				40.00.04	100		Ā		ļ.,				ļ		∮
	and a second of campo.	-			S-3	19,32,21	100			_					ļ	/:	1
ı	Dense, brown, SILTY fine to medium SAND, trace coarse	-10		SM						10-	-				ļ	4	
	sand and fine gravel; wet.	-			S-4	12,20,23	100			-	ļ.,						<u> </u>
	(Drill action indicates increase gravels. Sample S-5 was	-			S-5 =	50/1"	100			-	١.,	 ⊕					50/1"
	driven on gravel/cobble.)	-								-							
	Boring completed at 12.8 feet below ground surface (bgs).	45								45							
	Boring backfilled with cuttings and bentonite chips. Drilling	-15								15-							
	could not advance below 12.5 feet due to gravels/cobbles.									_	ļ.,				ļ		
22		_								-	ļ.,			ļ	ļ		
LATE_(7-21-11).GDT 10/19/22		-								-	ļ.,				ļ		
).GDT		-20								20-		+		ļ		ļ	
7-21-11		_								-							
ATE_(-								-		• • •					
		_								-		• •					
DATA		-25								25-							
.GPJ		_ 23								23	ļ.,						
EBRIS		_								_	ļ.,				ļ		
ODY		_								-	ļ.,						
SE WC		-								-	١.,			ļ	ļ		
KERID		⊥ ₃₀ -								- 30-	<u> </u>			l	L	L	\dashv
SRK-LA	Date Completed: 4/21/2021								3.5 feet north a								ter
YLOR (Driller: Geologic Drill Partners Faujoment: MT55 Track Rig	pravel/cobble.) Inpleted at 12.8 feet below ground surface (bgs). er encountered at 7.5 feet bgs at time of drilling. Afilled with cuttings and bentonite chips. Drilling dvance below 12.5 feet due to gravels/cobbles. -20 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25) 19 feet s 0884.272)		i oi su	rvey marker 6	0202	(I	N. I	ೲ	00.01	94 ⊑		
ER TA	Drilling Method: 4-1/4 inch ID HSA					Taylor Creek Restoration: Dead Horse											
) LOW	Hammer System: Cathead					Canyon Seattle, WA											
LOG OF BORING (2/1/11) LOWER TAYLOR CRK-LAKERIDGE WOODY DEBRIS.GPJ DATA_TEMF																	
ORING						LOG OF BORING B-311											
GOFB					C	399315									FIGI	JRE	A-13
Š	Lagrand by A.C. Paviawad by III/I.																

	SOIL DESCRIPTION	Depth, ft	Symbol	nscs	Samples	Blows/6"	Recovery, %	Lab tests	Ground Water	Depth, ft	A	Blov Blov	etration vs per to vs per to Water	oot (S oot (n	PT) on-sta	nce ndard) LL	
-	Surface Elevation: 113.001 NAVD88 Loose, dark brown, SILTY fine to medium SAND WITH GRAVEL, few coarse sand; moist to wet; scattered organics	-0 -	S	SM	S		<u> </u>	_	05	- 0-	0	10	20	30	40	50 60	
	(roots).	- - -			S-1	3,2,3	27			-		 ⊕					
	Becomes dense, brown, no roots.	-5 -			S-2	16,17,27	40	GSD		5- -							
	Becomes medium dense, trace coarse sand, occasional fine sand layer (1/2" thick and horizontally bedded), scattered rust staining.	- -			S-3	12,10,16	100			-	 					70	
	(Drill action indicates increased gravels/cobbles.)	-10 -			S-4	35,28,42	100			10- - -		 • - 				50/4"	
L	Becomes wet, occasional rust staining. Boring completed at 13 feet below ground surface (bgs). Groundwater encountered at 12.5 feet bgs at time of drilling. Boring backfilled with cuttings and bentonite chips. Drilling could not advance below 13 feet due to gravels/cobbles.	<u></u>			S-5	50/4"	100		Ā	-						>>•	
		-15 -								15- -							
JT 10/19/22		_								-							
TE_(7-21-11).GI		-20 - -								20-							
DATA_TEMPLA		- - -25								- - 25-							
DEBRIS.GPJ I		-								-							
RIDGE WOODY		30-								- -30-							
LOG OF BORING (2/1/11) LOWER TAYLOR CRK-LAKERIDGE WOODY DEBRIS.GPJ DATA_TEMPLATE_(7-21-11).GDT 10/19/22	Date Completed: 4/21/2021 Driller: Geologic Drill Partners Equipment: MT55 Track Rig		Approximate Location: 8 feet south and 3 feet east of survey marker 60248. (N: 188415.95 E: 1290819.558)														
1/11) LOWER TA	Drilling Method: 4-1/4 inch ID HSA Hammer System: Cathead					Taylor Creek Restoration: Dead Horse Canyon Seattle, WA											
- BORING (2/	Seattle Public					LOG OF BORING B-312											
LOG 01	Utilities Geotechnical Engineering				С	399315								FIG	URE	A-14	

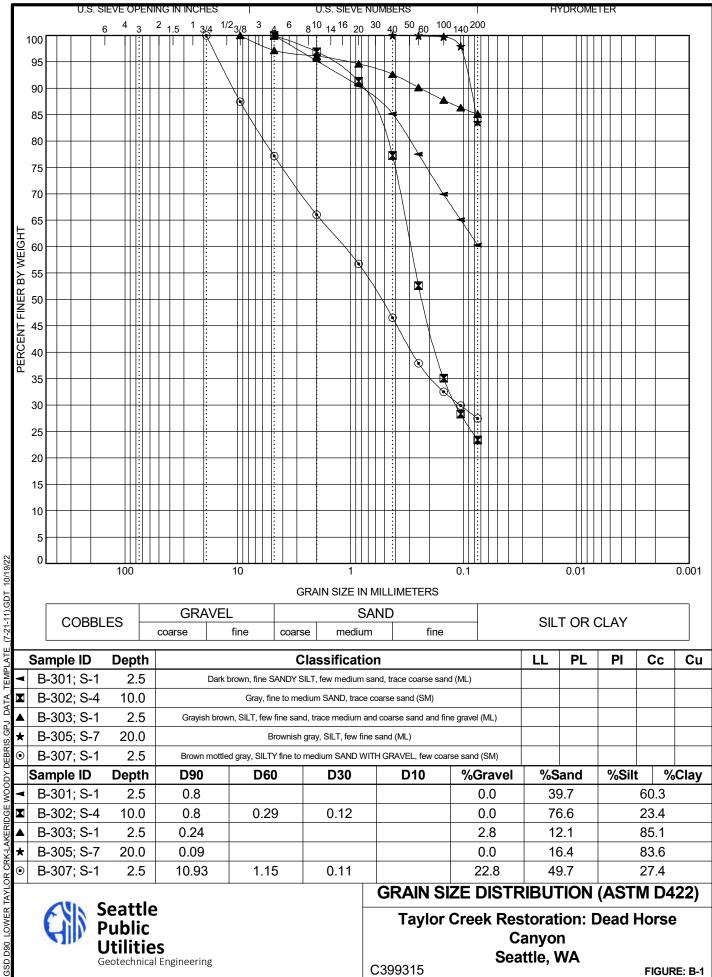
Logged by: AJC Reviewed by: HKH Sheet 1 of 1

APPENDIX B

GEOTECHNICAL LABORATORY TESTING PROGRAM

APPENDIX B

GEOTECHNICAL LABORATORY TESTING PROGRAM


SPU Geotechnical Engineering representatives completed laboratory tests on select soil samples collected during our field investigation. The laboratory tests were completed in general accordance with appropriate ASTM test methods. The test procedures and test results are discussed below. Additional laboratory tests were completed by our consultant, HWA GeoSciences Inc. (HWA). HWA's test procedures and test results are provided in this Appendix after the results of testing completed by SPU Geotechnical Engineering.

Natural Water Content

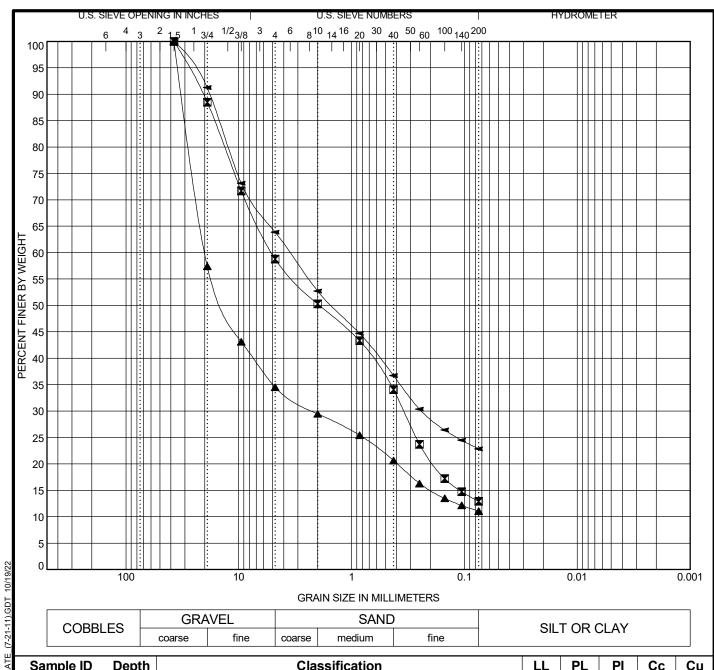
Natural water content determinations were made on select soil samples in general accordance with ASTM D-2216, Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. Test results are graphically indicated at the appropriate sample depth on the summary logs in Appendix A.

Grain-size Distribution

The grain-size distribution of select samples was analyzed in general accordance with ASTM D422, Standard Test Method for Particle-Size Analysis of Soils. Results of grain size analyses are plotted on Figures B-1 and B-2 of this appendix. The soil samples tested for grain size distribution are indicated on the summary logs in Appendix A.

CORPLES	GRA	AVEL		SAND)	SILT OR CLAY
CODDLES	coarse	fine	coarse	medium	fine	SILT OR CLAY

	Sample ID	Depth		C	lassificatio	n		LL	PL	PI	Сс	Cu
-	B-301; S-1	2.5	Dark I	orown, fine SANDY S	SILT, few medium sa	and, trace coarse sar	nd (ML)					
X	B-302; S-4	10.0		Gray, fine to me	dium SAND, trace o	coarse sand (SM)						
Ī	B-303; S-1	2.5	Grayish brow	n, SILT, few fine san	d, trace medium an	d coarse sand and fi	ne gravel (ML)					
*	B-305; S-7	20.0		Brownish	gray, SILT, few fine	sand (ML)						
0	B-307; S-1	2.5	Brown mottle	d gray, SILTY fine to	medium SAND WI	TH GRAVEL, few coa	rse sand (SM)					
	Sample ID	Depth	D90	D60	D30	D10	%Gravel	%S	and	%Silt	%	Clay
-	B-301; S-1	2.5	8.0				0.0	39	9.7		60.3	
×	B-302; S-4	10.0	8.0	0.29	0.12		0.0	76	6.6		23.4	
Δ	B-303; S-1	2.5	0.24				2.8	12	2.1		85.1	
*	B-305; S-7	20.0	0.09				0.0	16	6.4		83.6	
©	B-307; S-1	2.5	10.93	1.15	0.11		22.8	49	9.7		27.4	



GRAIN SIZE DISTRIBUTION (ASTM D422)

Taylor Creek Restoration: Dead Horse Canyon Seattle, WA

C399315

FIGURE: B-1

COBBLES	GRA	VEL		SAND)	SILT OR CLAY
COBBLES	coarse	fine	coarse	medium	fine	SILT OR CLAT

Classification

	•											
TEMPL	B-311; S-1	2.5		Grayish brown	n, SILTY SAND WITH							
	B-312; S-2	5.0	Brown	, SILTY fine to mediu	um SAND WITH GRA	AVEL, few coarse sa	nd (SM)					
<u> </u>	B-313; S-1	2.5	Dar	k brown, GRAVEL W	/ITH fine to medium S	SAND AND SILT (GF	P-GM)				4.5	369.0
S.GP												
EBR												
] D∆ D	Sample ID	Depth	D90	D60	%Gravel	%S	and	%Silt	: 9	6Clay		
0 ∧ ∧	B-311; S-1	2.5	18.11	3.52	0.24		36.1	4	1.0			
DGE	B-312; S-2	5.0	20.76	5.07	0.35		41.2	45.9			12.9	
ER R	B-313; S-1	2.5	31.96	19.8	65.5	2:	3.4		11.0			
X.	,		000	10.0	2.2		00.0		· · ·			
R CRK-LAKERIDGE WOODY DEBRIS.GPJ DATA	2 0 10, 0 1	2.0	01.00	10.0			00.0		<u>. </u>			

Depth

Sample ID

GRAIN SIZE DISTRIBUTION (ASTM D422)

PL

Cc Cu

Taylor Creek Restoration: Dead Horse Canyon Seattle, WA

C399315 FIGURE: B-2

May 27, 2021 HWA Project No. 2019-129-21 T2E

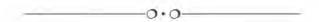
Seattle Public Utilities 700 5th Ave P.O. Box 34018 Seattle, Washington 98124-4018

Attention: Mr. Aaron Clark, L.G.

Subject: Materials Laboratory Report

Atterberg Limits Testing

Lower Taylor Creek - Lakeridge Haul Road


Client Project No.: C399315

Dear Mr. Clark;

In accordance with your request, HWA GeoSciences Inc. (HWA) performed laboratory testing for the above referenced project. Herein we present the results of our laboratory analyses, which are summarized on the attached reports. The laboratory testing program was performed in general accordance with your instructions and appropriate ASTM Standards as outlined below.

SAMPLE DESCRIPTION: The subject samples were delivered to our laboratory on May 19, 2021 by the client. The samples were delivered in re-sealable plastic jars and were designated with exploration ID, sample number, and depth of sampling. The soil samples were classified using visual-manual methods. The descriptions may be found on the attached Summary of Material Properties, Figure 1.

LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY INDEX OF SOILS (ATTERBERG LIMITS): The plasticity index of each specified sample was tested using method ASTM D4318, multi-point method. The results are reported on the attached Liquid Limit, Plastic Limit, and Plasticity Index Report, Figures 2 through 3.

CLOSURE: Experience has shown that test values on soil and other natural materials vary with each representative sample. As such, HWA has no knowledge as to the extent and quantity of material the tested samples may represent. HWA also makes no warranty as to how representative either the samples tested or the test results obtained are to actual field conditions. It is a well-established fact that sampling methods present varying degrees of disturbance that affect sample representativeness.

No copy should be made of this report except in its entirety.

We appreciate the opportunity to provide laboratory testing services on this project. Should you have any questions or comments, or if we may be of further service, please call.

HWA GEOSCIENCES INC.

Kristin Nolan

Materials Laboratory Manager

Steven E. Greene, L.G., L.E.G. Principal Engineering Geologist

Vice President

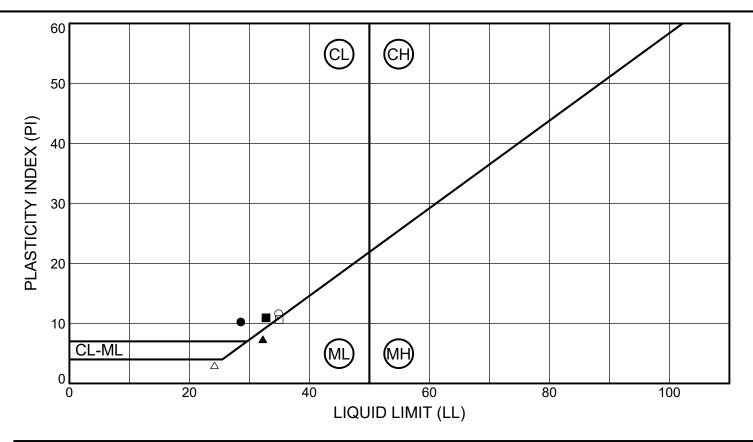
Attachments:

Figure 1 Summary of Material Properties

Figures 2-3 Liquid Limit, Plastic Limit, and Plasticity Index Report

		E			GRAVITY		ATTERBERG LIMITS (%)					NO	
EXPLORATION DESIGNATION	TOP DEPTH (feet)	BOTTOM DEPTH (feet)	MOISTURE CONTENT (%)	ORGANIC CONTENT (%)	SPECIFIC GRA	LL	PL	PI	% GRAVEL	% SAND	% FINES	ASTM SOIL CLASSIFICATION	SAMPLE DESCRIPTION
B-301,S-3	7.5	9.0	21.3			29	18	11				CL	Olive-brown, lean CLAY
B-302,S-2	5.0	6.5	23.8			33	22	11				CL	Dark olive-brown, lean CLAY with organics
B-304,S-3	7.5	9.0	28.4			32	25	7				ML	Olive-brown, sandy SILT
B-304,S-6	15.0	16.5	22.0			35	23	12				CL	Dark gray, lean CLAY
B-305,S-1	2.5	4.0	23.3			35	24	11				CL	Light olive-brown, lean CLAY with sand
B-305,S-8	25.0	26.5	29.2			24	21	3				ML	Gray, sandy SILT
B-306,S-4	10.0	11.5	15.6			32	17	15				CL	Grayish-brown, sandy lean CLAY
B-308B,S-1	5.0	6.5	27.9			49	26	23				CL	Olive-brown, lean CLAY
B-310,S-2	5.0	6.5	16.4			34	19	15				CL	Olive-brown, sandy lean CLAY with gravel
B-313,S-8	20.0	21.5	24.8			40	24	16				CL	Gray, lean CLAY
B-315,S-1	2.5	4.0	19.8			33	19	14				CL	Olive-brown, lean CLAY

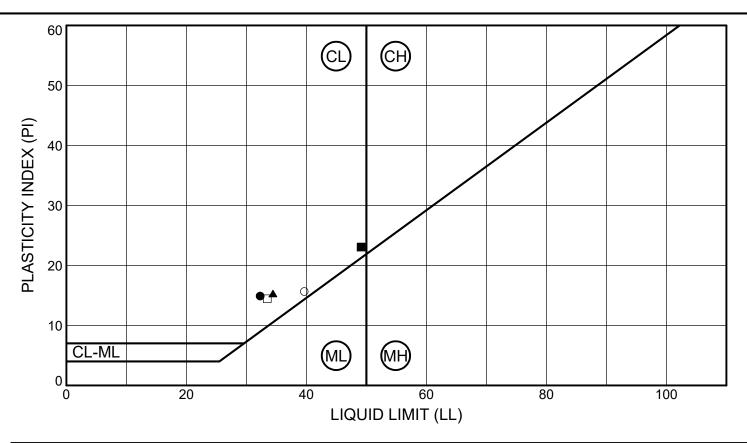
Notes:


- 1. This table summarizes information presented elsewhere in the report and should be used in conjunction with the report test, other graphs and tables, and the exploration logs.
- 2. The soil classifications in this table are based on ASTM D2487 and D2488 as applicable.

Seattle Public Utilities Lower Taylor Creek - Lake Ridge Haul Road Client Project No.: C399315 SUMMARY OF MATERIAL PROPERTIES

PAGE: 1 of 1

PROJECT NO.: 2019-129 T02E FIGURE: 1



SYMBOL	SAMPI	.E	DEPTH (ft)	CLASSIFICATION	% MC	LL	PL	PI	% Fines
•	B-301	S-3	7.5 - 9.0	(CL) Olive-brown, lean CLAY	21	29	18	11	
-	B-302	S-2	5.0 - 6.5	(CL) Dark olive-brown, lean CLAY with organics	24	33	22	11	
•	B-304	S-3	7.5 - 9.0	(ML) Olive-brown, sandy SILT	28	32	25	7	
0	B-304	S-6	15.0 - 16.5	(CL) Dark gray, lean CLAY	22	35	23	12	
	B-305	S-1	2.5 - 4.0	(CL) Light olive-brown, lean CLAY with sand	23	35	24	11	
Δ	B-305	S-8	25.0 - 26.5	(ML) Gray, sandy SILT	29	24	21	3	

Seattle Public Utilities Lower Taylor Creek - Lake Ridge Haul Road Client Project No.: C399315 LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS METHOD ASTM D4318

PROJECT NO.: 2019-129 T02E FIGURE:

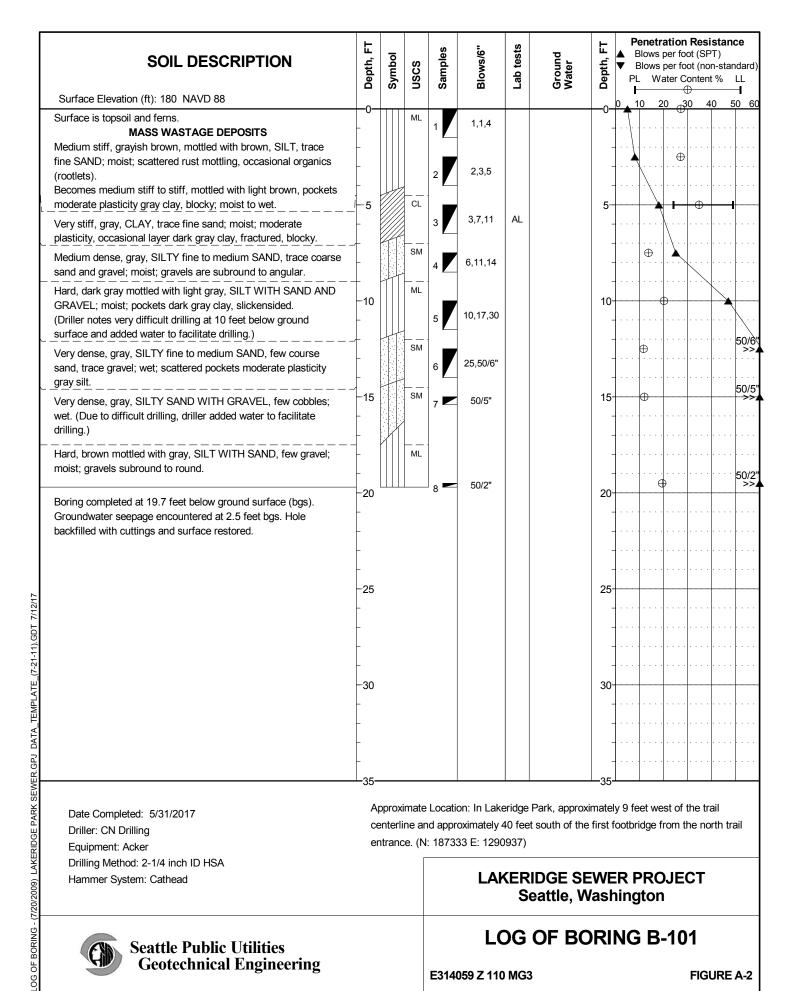
SYMBOL	SAMPI	_E	DEPTH (ft)	CLASSIFICATION	% MC	LL	PL	PI	% Fines
•	B-306	S-4	10.0 - 11.5	(CL) Grayish-brown, sandy lean CLAY	16	32	17	15	
-	B-308B	S-1	5.0 - 6.5	(CL) Olive-brown, lean CLAY	28	49	26	23	
A	B-310	S-2	5.0 - 6.5	(CL) Olive-brown, sandy lean CLAY with gravel	16	34	19	15	
0	B-313	S-8	20.0 - 21.5	(CL) Gray, lean CLAY	25	40	24	16	
	B-315	S-1	2.5 - 4.0	(CL) Olive-brown, lean CLAY	20	33	19	14	

Seattle Public Utilities Lower Taylor Creek - Lake Ridge Haul Road Client Project No.: C399315 LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS METHOD ASTM D4318

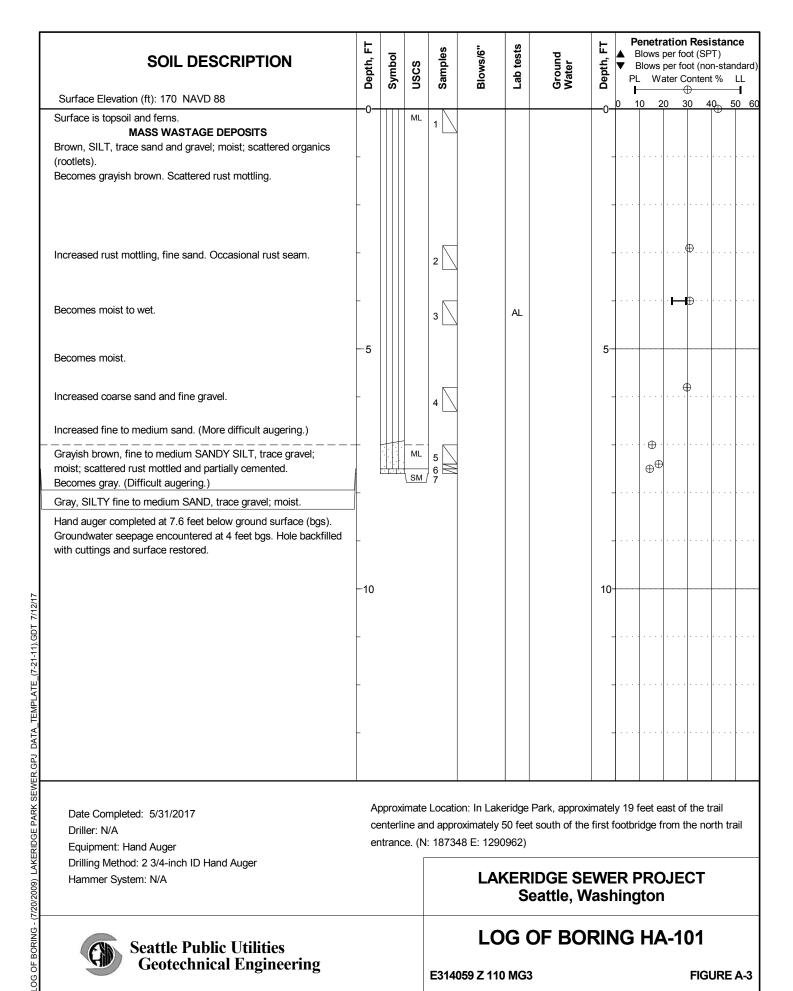
PROJECT NO.: 2019-129 T02E FIGURE: 3

APPENDIX C HISTORICAL EXPLORATIONS

APPENDIX C

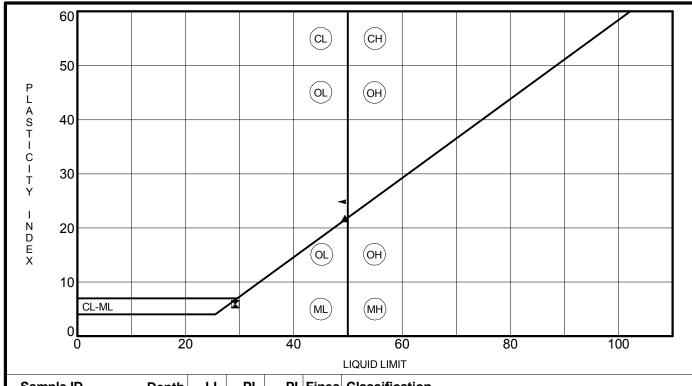

HISTORICAL EXPLORATIONS

In addition to the explorations and laboratory test results presented in Appendices A and B, respectively, historical explorations completed by others or completed by us for other projects were reviewed to gain an understanding of the subsurface conditions at the site. Figure 1 shows the approximate locations of the historical explorations in the vicinity of the project site.


The following historical exploration logs and laboratory test results were relevant in our analysis, in terms of depth and location, and are presented in this appendix.

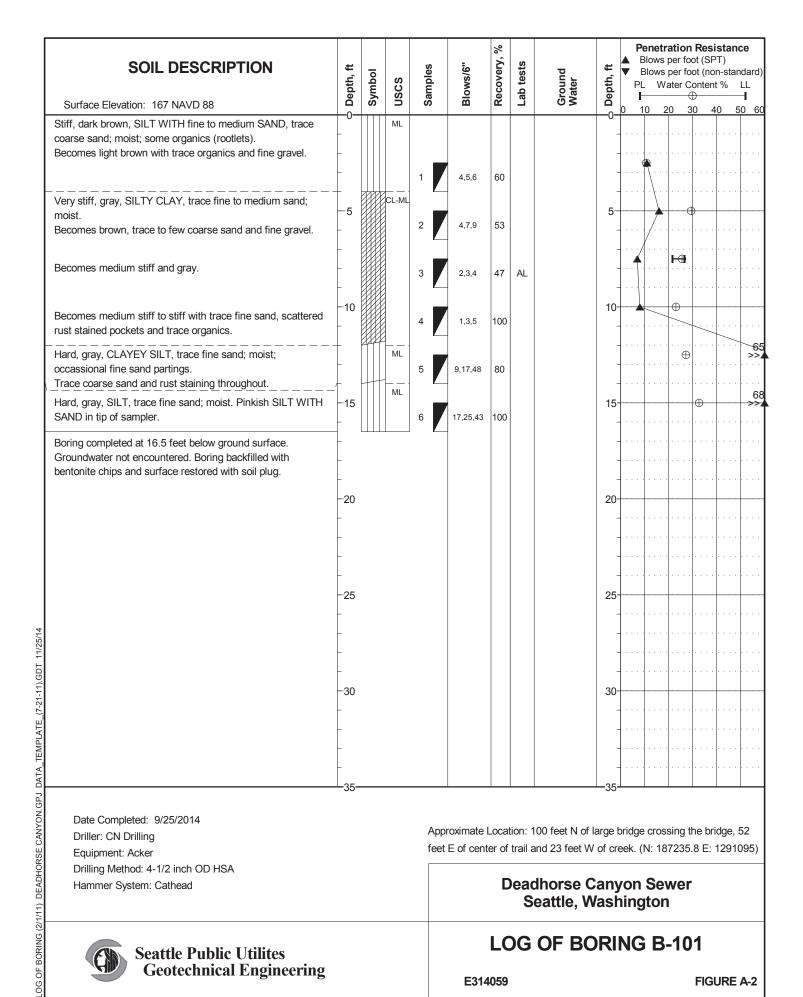
- Seattle Public Utilities Geotechnical Engineering
 - o Boring B-101, completed May 31, 2017
 - o Hand Auger HA-101, completed May 31, 2017
 - o Hand Auger HA-102, completed May 31, 2017
 - Atterberg Limits Results
- Seattle Public Utilities Geotechnical Engineering
 - o Boring B-101, completed September 25, 2014
 - o Boring B-102, completed September 25, 2014
 - o Boring B-103, completed September 25, 2014
 - o Atterberg Limits Results
- Golder Associates
 - o Boring B-1, completed September 21, 1994
 - o Boring B-2, completed September 25, 1994
 - o Boring B-3, completed September 26, 1994
 - o Boring B-4, completion date not reported
 - o Boring B-5, completed September 21, 1994
 - Atterberg Limits Results (2 pages)
 - o Grain Size Determination Results (4 pages)

These logs and laboratory tests are presented for reference only.

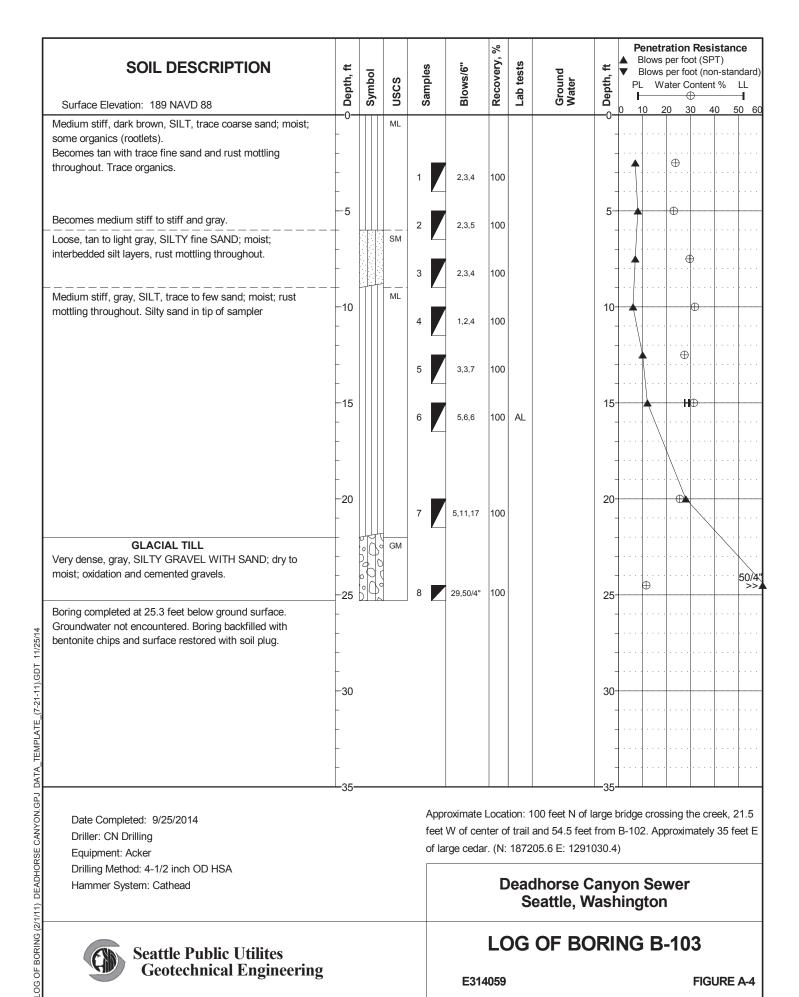


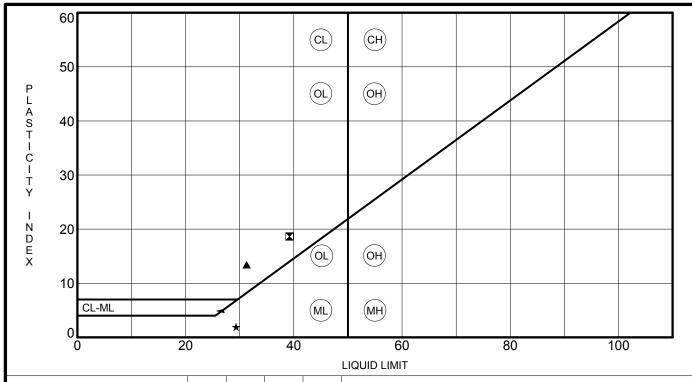
Logged by: HKW Reviewed by: AJC Sheet 1 of 1

Logged by: HKW/KH Reviewed by: HKW/KH Sheet 1 of 1


SOIL DESCRIPTION	Depth, FT	Symbol	nscs	Samples	Blows/6"	Lab tests	Ground Water	Depth, FT	A	Blow Blow	s per s per	foot (S foot (r Conte	SPT) non-sta	andar
Surface Elevation (ft): 152 NAVD 88	 0-		ML	1				- 0-	0	10	20	30	40	50
Surface is topsoil and ferns. MASS WASTAGE DEPOSITS Brown, SILT, trace gravel; moist to wet; scattered organics and tan/gray mottling. (Easy Augering).	-		IVIL					-						
Blueish gray, CLAY, trace gravel; moist to wet; interbedded with brown clay, occasional organics (roots, wood), scattered rust mottling, organic odor.	- - - -		CL	2				-				€)	
At 3.5 feet - 3 inch layer of dark brown silt with numerous organics and organic odor. At 3.8 feet - 1 inch layer highly organic layer, grading to blueish gray clay.	-5			3		AL		5-					•	-
Increased rust mottling, trace to few gravel.	_							-						
Light brown, SILT WITH SAND, few gravel; moist; numerous rust mottling, scattered organics.			ML	4				-				Ð 		
Blueish gray, SILT WITH fine SAND, trace gravel; wet; numerous rust mottling throughout, numerous organics.	-		ML	5			Ā	-					+	
Becomes saturated, trace to few fine gravel.	_							-						
Brown, SAND WITH SILT, trave gravel; saturated; interbedded brown sand, scattered rust mottling, organics, blueish gray clay in tip of hand auger.	-10		SP-SM CL	6				10-			+	+		
Blueish gray, CLAY WITH SAND, few gravel; saturated; numerous organics.		V////						-						
Boring completed at 10.9 feet below ground surface (bgs). Groundwater was encountered at approximately 7.5 feet bgs. Boring backfilled with cuttings.	_							-						
	_							-						
Date Completed: 5/31/2017 Driller: N/A Equipment: Hand Auger	ce	enterli	ne an	d appro		40 feet	Park, approxi south of the		-					trail
Drilling Method: 2 3/4-inch ID Hand Auger Hammer System: N/A					LA		DGE SE eattle, W					ECT	•	
Seattle Public Utilities Geotechnical Engineering					LC)G (OF BOI	RIN	1G	Н	A -′	102)	
Geolecinical Engineering				Ec	59 Z 11								SURE	

	Sample ID	Depth	LL	PL	PI	Fines	Classification
-	B-101, 3	5.0	49	24	25		Gray, CLAY (CL)
	HA-101, 3	4.0	29	23	6		Brown, SILT (ML)
	HA-102, 3	3.5	49	28	21		Gray, CLAY/ORGANIC CLAY (CL-OL)
L							
L							
6/16/17							
DT 6/							
(7-21-11).GDT							
TEMPLATE							
J DAT							
ER.GP							
SEW							
PAR							
RIDGE							
LAKE							
IMITS							ATTERBERG LIMITS RESULTS
US ATTERBERG LIMITS LAKERIDGE PARK SEWER.GPJ DATA		attle Pub eotechni				g	LAKERIDGE SEWER PROJECT Seattle, Washington
US A		WA No	o.: E31	4059 2	Z 110 ľ	MG3	FIGURE: B-1


ATTERBERG LIMITS RESULTS


Logged by: HKW Reviewed by: MKH Sheet 1 of 1

Surface	SOIL DESCRIPTION E Elevation: 174 NAVD 88	Depth, ft	Symbol	nscs	Samples	Blows/6"	Recovery, %	Lab tests	Ground Water	Depth, ft	♣	Blows Blows PL W		ot (SF ot (no onten	PT) on-star t %	ndard) LL -I
Stiff, dark	s brown, SILT WITH fine to medium SAND, trace and; moist; some organics (rootlets). tan with trace fine gravel.	 0 -		ML			_	_			0		20 3	30 4	10 5	60 60
		-			1	5,5,5	100			-						
	stiff to stiff, gray, SILT, trace to few fine sand, trace bl; moist; interbedded layer light gray fine sand.	-5 -		ML	2	3,4,4	60			5-						
	tannish gray, SILTY CLAY, trace sand and fine oist; scattered rust mottling.			CL	3	3,5,11	100	AL		-						
Becomes partings.	hard, light brown with occassional fine sand	-10 -			4	9,12,21	100			10-				1		
Becomes black silt	very stiff, gray with rust pockets and occassional pockets.	-			5	5,11,17	100	AL		_						70
	GLACIAL TILL se, tan, SILTY fine to medium SAND, few coarse gravel; moist; rust mottling throughout.	-15 - -		SM	6	19,37,42	100			15- -						79 >> 50/5"
Groundw	impleted at 17.9 feet below ground surface. ater not encountered. Boring backfilled with chips and surface restored with soil plug.	-20			7	50/5"	100			20-						>>4
		-								-						
		-25								25-						
11/25/14		-								_						
21-11).GDT		-30								30-						
EMPLATE_(7-		- - -								-						
DATA_T										35_						
Drille Equi	Completed: 9/25/2014 r: CN Drilling pment: Acker				fee				00 feet N of feet E of cen	_	_		_		_	21
Ham Ham	ng Method: 4-1/2 inch OD HSA mer System: Cathead						D		dhorse C eattle, W					•		
BORING (2.	Seattle Public Utilites						LC	G	OF BC	RII	NC	3 B	-10	2		
06 OF	Geotechnical Engineering					E314	059							FIG	URE	A-3

Logged by: HKW Reviewed by: MKH Sheet 1 of 1

Logged by: HKW Reviewed by: MKH Sheet 1 of 1

							LIGOID LIMIT
	Sample ID D	Depth	LL	PL	PI	Fines	Classification
ŀ	B-101, 3	7.5	26	22	4		Gray, SILTY CLAY, trace to few sand and fine gravel (CL-ML)
2	B-102, 3	7.5	39	21	18		Gray, SILTY CLAY, trace to few sand and fine gravel (CL).
4	B-102, 5	12.5	31	18	13		Gray, SILTY CLAY, trace to few sand and fine gravel (CL).
×	B-103, 6	15.0	29	27	2		Gray, SILT, trace to few sand (ML).
777							
7							
5							
5							

US ATTERBERG LIMITS DEADHORSE CANYON.GPJ DATA_TEMPLATE_(7-21-11).GDT 10/22/14

WA No.: E314059

ATTERBERG LIMITS RESULTS

Deadhorse Canyon Landslide Study Seattle, Washington

FIGURE: C-1

PROJECT NUMBER: 943-1626

RECORD OF BOREHOLE B-1

SHEET 1 OF 2

DATUM: MSL

BORING LOCATION: Crestwood Drive S.

BORING DATE: 9/21/94

	HOD	SOIL PROFILE						SAMPLES			PENETRATIO BLOV	N RESISTANCE VS/FT	PIEZOMET GRAPHK
	BORING METHOD		18	E E	ELEV.	55	OT)	8LOWS / 6 IN.	N	E -	10 20		
; ;	BORIN	DESCRIPTION	uscs	GRAPHIC LOG	ОЕРТН	NUMBER	ТУРЕ	140 lb. hammer 30 inch drop		REC/ATT	WATER CONT	ENTPERCENT W	LEVEL
Ž.		U development			275.0	Ē		15.000.000					- 1010
o		Very dense, alive gray (5Y 4/1) to olive black (5Y 2/1), Sifty fine to coarse SAND, trace to little gravel, trace cobble (TiLL)	SM		<u>262.5</u> 12.5		SS	50/5*	50+	4/5*		J.	
			SM		<u>247.5</u> 27.5	2	ss	50/5*	50+	3/5*		OEM BA	Contract Con
	4 Inch I.D. HSA		SM		232.5 42.5	3	SS	100/6"	50+	<u>6/6</u> -			
			SM	7	217.5 57.5	4	ss	50/4*	50+	3/4*			
		Orilling eases 64-65 feet Very dense, medium grey (N5), non-stratified CLAYEY SILT, trace fine sand											
		Continued on page 2		2/1									1 28

DRILLING CONTRACTOR: RAM, Inc.

DRILLER: George Jewel

CHECKED: Jim Johnson

DATE: 10/31/94

RECORD OF BOREHOLE B-1

SHEET 2 OF 2

DATUM: MSL

PROJECT NUMBER: 943-1626

BORING LOCATION: Crestwood Drive S.

BORING DATE: 9/22/94

	5	SOIL PROFILE	_	_				SAMPLES			PENETRATION RESISTANCE BLOWS/FT	PIEZOMETE GRAPHIC
DEPTH FEET	BORING METHOD	DECOGNICTION		212	ELEV.	E E	10	BLOWS / 6 IN.	N	E i	WATER CONTENT/PERCENT	50 GRAPHIC WATER
DEP.	BOR	DESCRIPTION	necs	GRAPHIC	DEPTH	NUMBER	TYPE	140 lb, hammer 30 inch drop		REC/ATT	Wpr WI	LEVEL
30		Very dense, medium grey (N5), non-stratified CLAYEY SILT, trace fine sand	CL		205.0 187.5 77.5	5	ss		50+	5/6*	o 21.9%	
o		Very dense, medium gray (N5), silty coarse to fine SAND, little gravel (TILL)	SM		185.0 90.0	6	SS		50+	4/6°	3	
00	Mod Hotary	Very dense, medium gray (N5), line to coarse GRAVEL, little to same silty sand		30 30 50 50 50 50 50 50 50 50 50 50 50 50 50	169.0 108.0	7	SS	50/6°, 50/1°	50+	ভা		838 AND
10		Very dense, brownish black (SYR 2/1), medium fibrous PEAT, some fine to medium sand	PI		164.0	8	ss	43, 50/2	50+	7/8*		-
20		Boring terminated @ 116.0* Plezometer installed full depth.		XX	159.0 116.0							Тонка
30												
40												
50												

DRILLING CONTRACTOR: RAM, Inc.

DRILLER: George Jewel

CHECKED: Jim Johnson

RECORD OF BOREHOLE B-2

SHEET 1 OF 3

DATUM: MSL

PROJECT NUMBER: 943-1626

BORING LOCATION: Lake Ridge Drive & Rustic Road

BORING DATE: 9/24-25/94

		SOIL PROFILE						SAMPLES			PENE	TRATION RESIS BLOWSÆT I		PIEZOMET GRAPHIC
	G ME	1.1040.004	II.	皇	ELEV.] <u>*</u>	H	BLOWS / 6 IN.	N	E -	10	SQ 30	40	Ĩ
	BORING METHOD	DESCRIPTION	uscs	GRAPHIC LOG	ОЕРТН	NUMBER	TYPE	140 lb. hammer 30 inch drop		REC/ATT	WATE	R CONTENT,PE	HCENT WI	WATER LEVEL
F		Very dense, moderate yellow brown (10YR 5/4),			265.0									
		fine to medium SANO, some silt, little fine gravel (WEATHERED TILL)												
			SM		250.0 15.0	1	ss	100/5	50+	2/5*				
4 both 10 tides	4-Inch I.D. HSA	Very dense, medium gray (N5), non-stratified SILT, some fine to coarse gravel, little sand (TILL)			235.0									
		Sand lense from 37"-40" (based on drilling action)	ML		235.0 30.0	2	SS	50/4*	50+	3/4*				-
		No recovery @S-3 gravel & cobbles			220.0 45.0	3	SS	22-38-50	88	<u>0718</u> -]				
		Very dense, dusky yellow green (5GY 5/2), non- stratified SILT and SILT CLAY, little sand, trace gravel (TILL)												
Mad Botan	MAD NOTALY		CL		205.0 60.0	4	SS	16-45-50/5"	50+	17/17		926.6%		B -
		Hard, medium gray (NS), SILTY CLAY to CLAY, trace sand, trace gravel (LACUSTRINE DEPOSIT) Continued on page 2						*						

DRILLING CONTRACTOR: RAM, Inc.

ORILLER: Dan Troxa

CHECKED: Jim Johnson

RECORD OF BOREHOLE B-2

SHEET 2 OF 3

DATUM: MSL

PROJECT NUMBER: 943-1626

BORING LOCATION: Lake Ridge Drive & Rustic Road

BORING DATE: 9/24-25/94

	HOD	SOIL PROFILE						SAMPLES			PENE	TRATION BLOWS	RESISTA	NCE	PIEZOMETE
	MET			Q	ELEV.			SLOWS / 6 IN.		- 0	10	20		40	PIEZOMETE GRAPHIC
	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH	NUMBER	TYPE	140 b, hammer 30 inch drop	N	REC/ATT	WATE	R CONTE		ENT - WI	WATER LEVEL
		Hard, medium gray (N5), SILTY CLAY to CLAY, trace sand, trace gravel (LACUSTRINE	CL	#	190.0 75.0	5	SS	50/6"-50/4"	50+	6/10 ⁻		22%	30%	47°	×
o		DEPOSIT)					540								
io.			СН		175.0 90.0	- 8	SS	21-50/5.5	504	9/11.5					
	Mud Rotary														
00	3				160.0 105.0	7	55		50+	0/3.5					
10		No recovery on S-7							1						
		Very dense, light olive gray (5Y 6/1) to very light gray (N8), fine to medium SAND, trace silt (weakly stratified)													
202			SP		145.0 120.0	8	SS	50/5*	50+	5/5"					10-
DÓ		Hard, grayish black (N2) stratified, CLAYEY ORGANIC SILT													
			он		130.0 135.0	9	SS	50/6"-50/5.5"	50+	กกรั				B	-
40		Hard, olive gray (5Y 4/1) stratified to non-stratified, CLAYEY SiLT becoming CLAY with depth, trace fine sand, little organic silt in sample at 145 feet	МН		125.0	10	SS	50/5*-50/2*	50+	เพาร				10.	
50		Continued on page 3	мн		120. <u>0</u> 145.0	11	58	50/3*-50/1*	50+	Wils.					M-

DRILLING CONTRACTOR: RAM, Inc.

DRILLER: George Jewel

CHECKED: Jim Johnson

RECORD OF BOREHOLE B-2

SHEET 3 OF 3

DATUM: MSL

PROJECT NUMBER: 943-1626

BORING LOCATION: Lake Ridge & Rustic Road

BORING DATE: 9/24-25/94

	9 9	SOIL PROFILE						SAMPLES			PEN	ETRATION R	ESISTANCE	PIEZONETO
FEET	MET			ಲ್ಲ	ELEV.	·		BLOWS/6 IN.		0	10		0 40	PIEZOMETE GRAPHIC
DEPTH FEET	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH	NUMBER	TYPE	140 lb. hammer 30 inch drop	N	RECIATT	WATI	ER CONTEN	T,PERCENT WI	WATER LEVEL
150		Division of the second		22	115.0			The second second		1000				
750		Hard, olive gray (5Y 4/1), stratified to non- stratified, CLAYEY SILT becoming CLAY with		4	150.0	12	SS	50/1*-5-/0.5	50+	0/1.5*				10-
		depth, trace line sand, little clayey organic siit in sample at 145 feet	3	4	1.50									
	lotany	and the same	CL	7	- 110.0 155.0	13	SS	500.5-500.5-500.5	504	051.5				10-
	Mud Rotary			Z		E				-1				
160	[5]			B	105.0									
		Spring terminated @160 75 leet	СН	74	100.0	14	3.5	50/5*-50/4*	50-	5/9*	-			-
170		Boring terminated @160.75 leet Sackfilled with bentonite to surface												
80														
90														
30														
10														
o l														
	RIG:	B-61				ogg	FD: S/	cott Hutsell						

DRILLING CONTRACTOR: RAM, Inc.

DRILLER: Dan Troxa

CHECKED: Jim Johnson

DATE: 10/31/94

RECORD OF BOREHOLE B-3

SHEET 1 OF 3

DATUM: MSL

PROJECT NUMBER: 943-1626

BORING LOCATION: Rustic Rd. & 108th St.

BORING DATE: 9/26/94

ET		SOIL PROFILE						SAMPLES			PEN	BLOWS	RESISTANCE	PIEZOMETE
Œ	BORING METHOD			ਹੁ	ELEV.			BLOWS / 6 IN.		-	10	20 :	30 40	PIEZOMETE GRAPHIC
OEPTH FEET	ORIN	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH	NUMBER	TYPE	140 b. hammer	N	HEC/ATT	WATE	ER CONTEN	NTPERCENT WI	WATER LEVEL
0	- CO		-	0.1	240.0			30 inch drop		Œ				
		Very dense, light olive gray (5Y 5/2), SILT, some fine to medium sand, trace gravel (TILL)												
10			SM		227.0 13.0			16-29-42	50+	18/18				-
20		Very dense, dark yellowish brown (10YR 4/2),												
30		fine to medium SAND, trace sift, trace gravel (ADVANCE OUTWASH)	SP		212.0 28.0	2	SS	<u> 3240-50/5*</u>	50+	1787				
40			SP		220.0 45.0	3	SS	15-36-46	50+	18/18				
50														
60			SP		182.0 58.0	7	SS	50/4"-50/2.5"	50+	4/6.5*				-
70		Hard, medium gray (N5), SILTY CLAY, trace line sand (PROGLACIAL LACUSTRINE CLAY) Continued on page 2	N. W. W. H. W. W. W. W. W. W.					•						

DRILL RIG: 8-61

DRILLING CONTRACTOR: RAM, Inc.

DRILLER: Mike Jordan

LOGGED: Scott Hutsell

CHECKED: Jim Johnson

RECORD OF BOREHOLE B-3

SHEET 2 OF 3

DATUM: MSL

PROJECT NUMBER: 943-1626

BORING LOCATION: Rustic Rd. & 108th St.

BORING DATE: 9/26/94

	HOD	SOIL PROFILE	1					SAMPLES				N RESISTANCE	PIEZOMETE GRAPHIC
DEPTH FEET	BORING METHOD	53.0000	1	말	ELEV.	E		BLOWS / 6 IN.	N	= -	10 50	30 40	
1	BORIN	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH	NUMBER	TYPE	140 lb. hammer 30 inch drop		PEC/ATT	Water con	TENTPERCENT W WI	WATER LEVEL
30		Hard, medium gray (N5), SILTY CLAY, trace fine sand (PROGLACIAL LACUSTRINE CLAY)	CL		165.0 75.0	5	SS	50/5	50+	4/5			
90			-a.		150.0 90.0	<u></u>	ss	50/37-50/27	50+	4/5*			-
100		Sample S-7 becomes CLAYEY SILT, little organics (wood chips)	мн		135.0 105.0	7	SS	50/2"-50/1"	50+	2/3			#-
20		Hard, brownish black (5YR 2/1), fibrous PEAT and ORGANIC CLAYEY SILT Hard, light olive gray (5Y 6/1), laminated CLAY (PROGLACIAL LACUSTRINE CLAY)	Pt —		120.0 120.0	8	SS		50+	3/3			
30		(PROGLACIAL CACUS IRINE CLAT)			105.0								
40			СН		135.0	9	SS	100/3*	50+	3/3]			16-
		1-1/4" gravel jammed in sample shoe, no recovery			95.0 145.0	10	SS	150/11	50+	<u>6/1</u>			B-
50		Continued on page 3		11									

DRILL RIG: 8-61

DRILLING CONTRACTOR: RAM, Inc.

DRILLER: Mike Jordan

LOGGED: Scott Hutsell

CHECKED: Jim Johnson

RECORD OF BOREHOLE B-3

SHEET 3 OF 3

DATUM: MSL

PROJECT NUMBER: 943-1626

BORING LOCATION: Rustic Rd. & 108th St.

BORING DATE: 9/26/94

	HOD	SOIL PROFILE						SAMPLES			PENETRATI	ON RESISTANCE	PIEZOMETE
DEPTH FEET	BORING METHOD			HG HG	ELEV.	5	B	BLOWS / 6 IN.	N	E Î	10 20	30 40	PIEZOMETE SO GRAPHIC
OEPT	BORIL	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH	NUMBER	TYPE	140 lb, hammer 30 lnch drop		REC/ATT	Waler Cor	W WI	WATER LEVEL
150		Very dense, medium dark gray (N4), SILTY CLAY and fine to medium SAND, trace gravel (TILL)		4									
		and line to medicint SANO, trace graves (TICL)			85.0								
			CL	1	155.0	71	SS	100/2	50+	22	p 10%		#-
				氢	80.0								
60			CL	1	160.0	72	SS	100/2	50+	272	010%		-
1			CL	#	75.0 165.0	13	SS	100/2"	50+	22	100		
				蓉		-			304	-	0 10%		
70			CL	Z	70.0 170.0	14	ss	100/2°	50+	22	010%		-
		Boring terminated @170.2 feet Backfilled with bentonite to surface			170.2								
80													
90													
											1111		
1													
Ш													
00						Ш							
10													
20													

DRILL RIG: 9-61

DRILLING CONTRACTOR: RAM, Inc.

DRILLER: Mike Jordan

LOGGED: Scott Hutself

CHECKED: Jim Johnson

RECORD OF BOREHOLE B-4

SHEET 1 OF 2

DATUM: MSL

eet BORING DATE:

PROJECT NUMBER: 943-1626

BORING LOCATION: Bangor & Waters Street

PENETRATION RESISTANCE SOIL PROFILE SAMPLES PIEZOMETER GRAPHIC BLOWS/FT DEPTH FEET 20 30 ELEV. GRAPHIC BLOWS / 6 IN. NUMBER N DESCRIPTION WATER CONTENTPERCENT WATER 140 b. hammer DEPTH LEVEL Wpr 30 inch drop 230.0 - 0 Very dense, brownish gray (5YR 4/1) fine to medium SAND, little gravel, cobbles, trace silt (OUTWASH) 10 SP SS 40-50/2" 6/7 50+ 20 Hard, medium dark gray (N4) CLAY, trace sand, trace gravel, becomes gravelly SILTY CLAY, little sand in S-3 (TILL) 200.0 30 CL 2 | SS 7-27-50/3.5 50+ 2/15 HSA 9 40 Boulder encountered @ 40 feet in re-drill attempt CL 45.0 50/3"-50/1" 3 SS 1/4 50+ 50 Hard medium gray (N5), non-stratified SILT to SILTY CLAY, to CLAY (PROGLACIAL LACUSTRINE CLAY) 60 ML 4 TSS 26-50/4* 50+ 9/1 70 Continued on page 2

DRILL RIG: 8-61

DRILLING CONTRACTOR: RAM, Inc.

DRILLER: Rodney

LOGGED: Scott Hutsell

CHECKED: Jim Johnson

RECORD OF BOREHOLE B-4

SHEET 2 OF 2

DATUM: MSL

PROJECT NUMBER: 943-1626

BORING LOCATION: Bangor & Waters Street

BORING DATE:

- 0	0	5,000,000	_		_	_		ingor a rraio	_	-		ORING L		-
-	HO	SOIL PROFILE						SAMPLES			PENET	RATION RESI BLOWS/FT		PIEZOMETS GRAPHIC
DEPTH FEET	BORING METHOD	DESCRIPTION)Hic	ELEV.	E.		BLOWS / 6 IN.	N	10	10	20 30 CONTENTES	40 POENT	WATER
DEPT	BOA	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH	NUMBER	7 PE	140 b. hammer 30 inch drop		RECATT	Wpr	W	WI	LEVEL
			-	1//	155.0							26%		
			CL	4	75.0	5	SS	19-20-50/5"	50+	16/17		24%10	18%	-
		Hard medium army (MS) consensatified CI AVEV									mp			
aro		Hard medium gray (N5) non-stratified CLAYEY SILT and CLAY (PROGLACIAL LACUSTRINE CLAY)												
	1	/	112							100				
					145.0	20				120	- 1			
			CL	12)	85.0	6	SS	15-50-50/1*	50+	12/13				#
90		Very dense GRAVEL, some cobbles		240										
		(OUTWASH?)		, 5000, 5000 5000 5000 5000 5000 5000 5										
				G.g.										
				700										
100				ga.										
100		No sample. Hole caving on drill rods.		000										
				200										
				000										Y .
				BD.										
ito.				9.0 O.0	120.0									
		Boring terminated @ 110.0' due to difficult drilling conditions			110.0									
		Soring backfilled with Bentonite												
20						k								
		l n					0.4							1
00												1 1		
40														
								Ŷ.						
50										-1				

DRILLING CONTRACTOR: RAM, Inc.

DRILLER: Rodney

LOGGED: Scott Hutself

CHECKED: Jim Johnson

RECORD OF BOREHOLE 8-5

SHEET 1 OF 1

DATUM: MSL

PROJECT NUMBER: 943-1626

BORING LOCATION: Holyoke Way

BORING DATE: 9/21/94

8LOWS/FT 10 20 30 40 50 140 b. hammer 30 inch drop WI 50/6* 504 2/6	100 July 100
5 10-10-8 18 18/18 50/6* 50+ 2/6	LEVE.
5 10-10-8 18 18/18 50/6* 50+ 2/6	29 1 38 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 10-10-8 18 18/18	29 1 38 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
50/6° 50+ 2/6 16.26 III	340 · · · · · · · · · · · · · · · · · · ·
50/6° 50+ 2/6 16.26 III	340 · · · · · · · · · · · · · · · · · · ·
50/6* 50+ 2/6	340 · · · · · · · · · · · · · · · · · · ·
50/6* 50+ 2/6 10-20 U	UCANO VALUE AND
9-7-8 15 18/16	**************************************
9-7-8 15 18/16	*endes Annantes tales.
9-7-8 15 18/16	*endes Annantes tales.
9-7-8 15 18/16	**************************************
	130/12
	-Caraca
1	10 10
8-21-36 57 18/18 36%	
1	
50/3.5* 50+ 12/35	l+
±.	***
50-50/2 50+ 2/8	-
	[5] H
	3

DRILL RIG: 8-61

DRILLING CONTRACTOR: RAM, Inc.

DRILLER: George Jewel

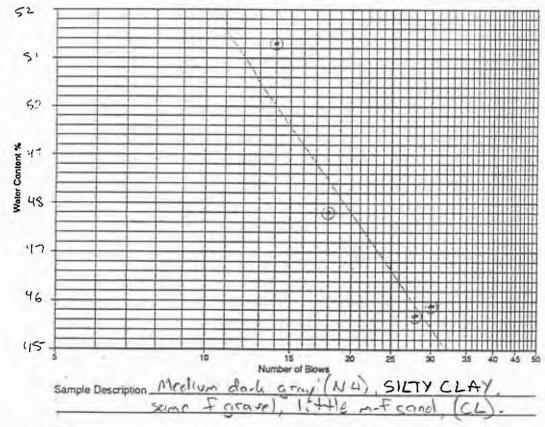
LOGGED: Richard Luark


CHECKED: Jim Johnson

Type of Test	LL	LL.	ш	LL	Nat. MC
Container #	1-7	1-78	7.87	1-90	30
Number of blows	22	23	17	26	-
Weight of sample wet + tare	36.57	38.19	39.49	38.03	50.03
Weight of sample dry + tare	32.43	33.31	34.33	33.31	44.87
Weight of water					
Tare	21.46	21.31	21.18	20.78	25.00
Weight of dry soil					
Water content %	37.7	407	39.2	27.7	26.0

Type of Test	PL	PL '
Container #	T-119	T-120
Weight of sample wet + tare	36.26	35.96
Weight of sample dry + tare	34.85	34.56
Weight of water 1		
Tare	28.65	28.96
Weight of dry soil		
Water content %	シスコ	25.0

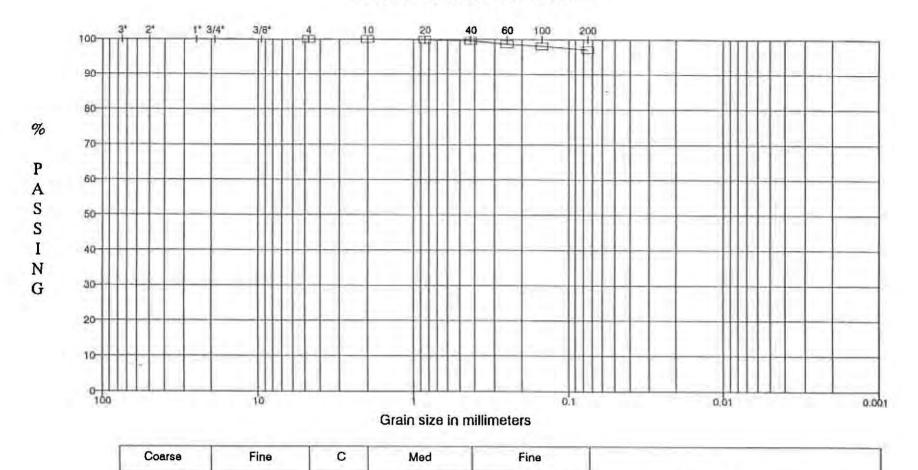
Borehole #	B-4
Sample #	5-5
Depth	75′
Liquid Limit	38
Plastic Limit	24
Plasticity Index	14
Moisture Content	26.0
Liquidity Index	0.14


ATTERBERG LIMITS, ASTM D4318

Project Sec+1/c / Lakewood TUAACI / WA
Project No. 943-1626 Date 11-29-94 Tested By MSB Checked By WO GO Golder Associates

Type of Test	LL.	LL	ш	LL.	Nat. MC
Container #	1.65	T-88	7.96	T-110	29
Number of blows	70	14	18	28	
Weight of sample wet + tare	38.82	40.54	38.65	40.18	40.45
Weight of sample dry + tare	33.31	33.83	32.91	34.12	34.83
Weight of water					
Tare	21.31	20.70	20.91	20.86	24.75
Weight of dry soil					
Water content %	45.9	51.3	47.8	45.7	30.0

Type of Test	PL	PL '
Container #	T-113	T-117
Weight of sample wet + tare	35.50	36.34
Weight of sample dry + tare	34.29	34.91
Weight of water		
Tare	28.81	28.58
Weight of dry soil		
Water content %	22.1	22.6


Borehole #	B-2			
Sample #	S-5			
Depth	90'			
Liquid Limit	47			
Plastic Limit	22			
Plasticity Index	25			
Moisture Content	30.0			
Liquidity Index	0.32			

ATTERBERG LIMITS, ASTM D4318

Project No. 943-1626 Date 11-29-94 Tested By MSB Checked By DED Golder Associates

US STANDARD SIEVE OPENING SIZES

GRAVE	L			SANE)		FINES (Silt or Clay)	
SAMPLE ID	DEPTH	W%	LL	PL	PI	USCS	DESCRIPTION	

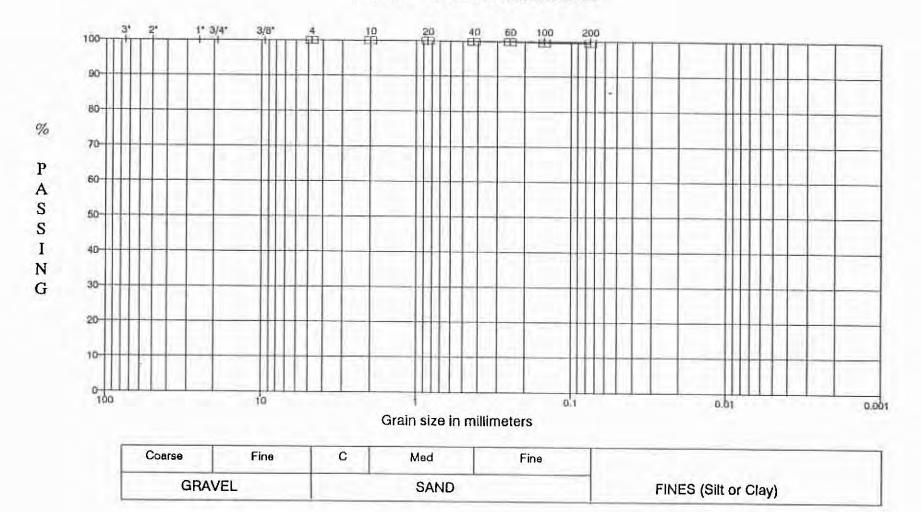
SAMPLE ID	DEPTH	W%	LL	PL	PI	USCS	DESCRIPTION
B-1 S-5	77.5-78'	21.9				CL	Medium gray (N5), CLAYEY SILT, trace m-f sand, (CL).

PROJECT:

SEATTLE/LAKEWOOD TUNNEL/WA

PROJECT NO.: 943-1626

DATE: 11-30-94


TECH: MSB

REVIEW: DPO

GOLDER ASSOCIATES INC.

REDMOND, WA

US STANDARD SIEVE OPENING SIZES

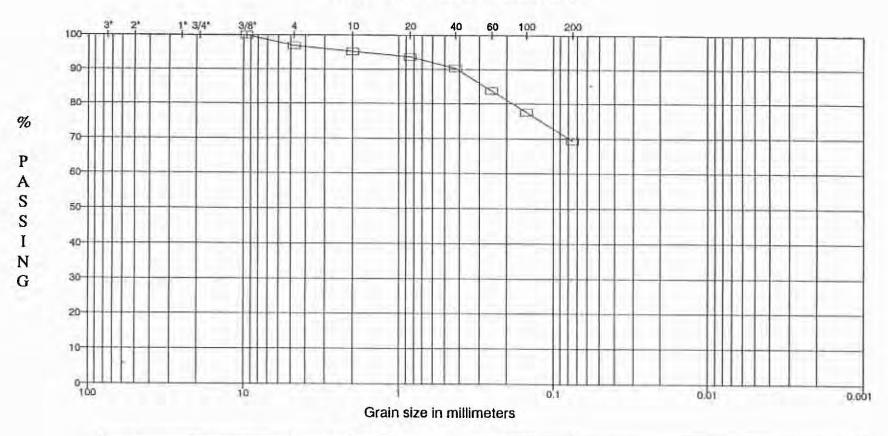
SAMPLE ID	DEPTH	W%	LL	PL	PI	USCS	DESCRIPTION
B-2 S-4	75'	26.6					Medium gray (N5), SILTY CLAY, trace m-f sand, (CL).

PROJECT:

SEATTLE / LAKEWOOD TUNNEL / WA

PROJECT NO.: 943-1626

DATE: 11-30-94


TECH: MSB

REVIEW: DPO

GOLDER ASSOCIATES INC.

REDMOND, WA

US STANDARD SIEVE OPENING SIZES

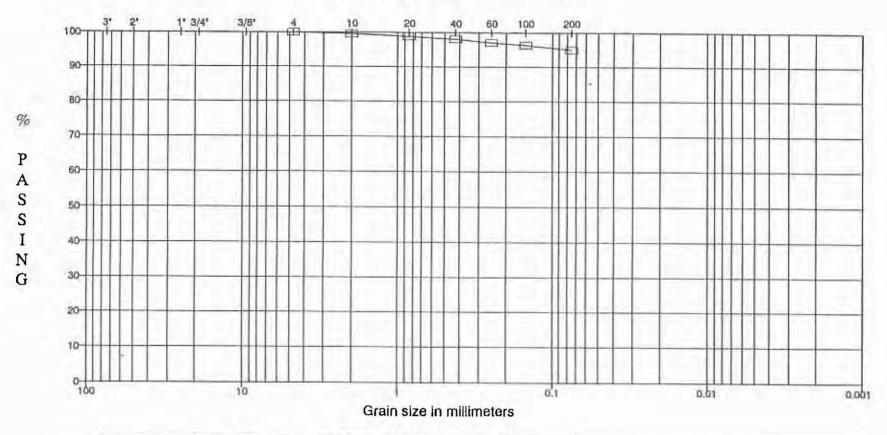
Coarse	Fine	C	Med	Fine	
GRAV	ÆL.		SAND		FINES (Silt or Clay)

SAMPLE ID	DEPTH	W%	LL	PL	PI	USCS	DESCRIPTION
B-3 S-11-14	155-170'	10.1				CL	Medium dark gray (N4), SILTY CLAY, some m-f sand, trace f gravel, (CL).

PROJECT:

SEATTLE / LAKEWOOD TUNNEL / WA

PROJECT NO.: 943-1626


DATE: 11-30-94

TECH: MSB

REVIEW: DPO

GOLDER ASSOCIATES INC. REDMOND, WA

US STANDARD SIEVE OPENING SIZES

Coarse	Fine	C	Med	Fine	
GRAV	'EL		SAND		FINES (Silt or Clay)

SAMPLE ID	DEPTH	W%	LL	PL	PI	USCS	DESCRIPTION
B-5 S-4	17.5-19'	36.2				СН	Medium gray (N5), CLAY, little c-f sand, (CH).

PROJECT:

SEATTLE / LAKEWOOD TUNNEL / WA

PROJECT NO.: 943-1626

DATE: 11-30-94

TECH: MSB

REVIEW: DPO

GOLDER ASSOCIATES INC.

REDMOND, WA